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A B S T R A C T

Dynamic price is considered a key demand response (DR) strategy that could be essential in solving demand and 
supply mismatch issues in the energy sector. As a dominant heating solution in northern Europe, district heating 
has a huge potential to support large-scale demand response. While the end-user consumption fee is currently flat 
for most district heating systems, a dynamic heat price can reflect the heat network’s production costs and carbon 
emission intensity, encouraging consumers to change their heat demand behavior. Still, the transition to dynamic 
price has not happened, mainly due to unknown impacts on consumers and operators. This study aims to reveal 
the impacts of dynamic heat prices on households with different reaction types and unveils potential savings 
compared to flat prices. We model a neighborhood consisting of consumers with no reaction, manual reaction, 
and automatic reaction to price. We then characterize the relationship between price and heat demand for 
different scenarios. It is shown that frequent thermostat adjustments are required to comply with prices, which 
can be overwhelming for consumers. Accordingly, occupants who only reduce their thermostat setting during 
expensive hours could reduce their heat costs by 34%. Automatic controllers can resolve this and can be designed 
to seamlessly react to price changes and save up to 46% of the heat costs. The study suggests that dynamic pricing 
can be leveraged to motivate consumers for load shifting, leading to decreased heating costs and 
decarbonization.

1. Introduction

Demand response (DR) is recognized as an effective strategy for 
decarbonizing energy systems by managing the time of use of energy to 
promote the integration of renewable energy sources [1,2]. In district 
heating, DR enables better management of heat demand by unlocking 
the flexibility of heat consumers, helping to reduce peak loads, and 
improving the overall efficiency of the heating network [3,4]. DR is 
mentioned to provide significant economic opportunities to facilitate 
decarbonization [5]. Occupants play a crucial role in achieving DR by 
adjusting their energy consumption behaviors. District heating opera
tors and policymakers recognize the pivotal role of residents in 
achieving future flexible district heating systems, but their under
standing of how residents can contribute is often limited [6]. Findings 
from a survey study on the heating behavior of consumers in 5 countries 
suggest that heating-related actions of consumers are not always 
rational and are affected by factors other than economic interest, logic, 

and rationality (i.e., demographical attributes and myopic preferences) 
[7]. For instance, non-rational behaviors, such as adjusting heating for 
luxury, highlight the complexity of occupant heat behavior [8]. Ac
cording to the final report of Annex 53 by the International Energy 
Agency [9], the driving forces of occupant’s energy-related behavior 
are:

1) internal: Biological, psychological, socio-economic, socio-de
mographic, and contextual factors.

2) external: Physical environment, building characteristics, gov
ernment regulations, and time.

The report shows that psychological driving forces are more signif
icant than other internal driving forces, and heating and cooling ther
mostat set points are highly correlated with age. There are some studies 
dedicated to analyzing these effects on building energy consumption 
across different countries [10,11]. They report that while some social 
factors, such as the positive relationship between household income and 
electricity consumption, are consistent across many countries, the other 
social factors, including family composition, age of the household 
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responsible, and education level, vary significantly by country. These 
studies suggest that energy consumption habits are deeply embedded in 
social, economic, and cultural conditions, requiring context-specific 
analysis. For example, a study in Denmark realized that a higher edu
cation level is correlated with decreased electricity consumption, but 
conversely, another study in China found the opposite [12]. A global 
study on building energy consumption and future trends revealed 
significantly different energy consumption patterns, growth trends, and 
future projections between developed and developing countries [13]. 
They stated policy maturity as one of the main reasons for this signifi
cant difference. According to [14], the building energy consumption 
patterns of South and Southeast Asia are likely to be very different from 
North America and Europe. One main factor is air conditioning tech
nology, which is decentralized in hot and humid countries but central
ized in northern Europe. Other factors are Economic development and 
household income, cultural norms, urbanization, and building 
characteristics.

Many studies identified energy price as one of the most dominant 
factors in determining the energy consumption of buildings [15,16]. A 
field study on 72 single-family houses connected to district heating in 
southern Denmark [17], focusing on DR using night setbacks in two 
consecutive heating periods (i.e. January 2014 – April 2014 and 
November 2014 – April 2015), revealed that although participants 
reacted quite differently to price changes, they all continued to use night 
setbacks during the second heating season deliberately. Accordingly, 
buildings could reduce their heating demand by 4–10 %. A survey study 
in Quebec, Canada [18], on the participation of people in DR programs, 
revealed that 84 % of the people agreed on the role of smart thermostats 
in facilitating participation in DR programs. One finding was that low- 
income families expressed high interest in participating in DR pro
grams but faced barriers such as limited smart technology. Eventually, 
they reported age, education, and frequency of working from home as 
the most significant variables in DR during peak winter periods. Stel
match et al. [19] conducted a study surveying 337 households in a 
Northern California city, investigating social aspects and household 
willingness for DR and peak load shifting. The study reported that 
households frequently adopt rules (e.g., keeping doors and windows 
closed) based on prices. They mention that homes with smarter tech
nology, more household members, and smaller floor areas usually have 
more willingness for DR. Li et al. [20] examined the readiness of 
building users for energy-flexible buildings in the Netherlands based on 

a survey of 785 respondents. According to their findings, financial in
centives are the most compelling motivator for respondents, and 11 % of 
respondents showed a positive willingness to change their energy use 
behavior. The authors concluded that widespread adoption hinges on 
raising awareness, providing incentives, and offering user-friendly 
control options that align with individual needs and preferences. Ac
cording to another field-level study on household heating preferences 
and thermostat control, people reacted quite differently when allowed to 
control their thermostats [21]. Some never changed their thermostats 
during winter, while others had up to seven different setpoint settings, 
highlighting the diversity in DR participation.

District heating is widely recognized as a reliable and cost-effective 
heating solution and serves as the primary heating method in many 
Northern European countries [22]. Its popularity is attributed to its 
ability to integrate diverse energy sources, including waste heat from 
industries and data centers, waste incineration, and renewable energy 
[23]. Furthermore, district heating systems can be operated with vary
ing configurations, such as different supply temperatures, to adapt to 
diverse geographical and climatic conditions [24]. District heating can 
benefit DR for improved efficiency, reduced costs, lower carbon emis
sions, etc. According to a survey on DR in district heating, experimental 
studies reported a 35 % peak shaving [25], a reduction of primary en
ergy by up to 4 % [26], and cost and emission reduction of up to 10 % 
[27]. DR in district heating can be triggered by implementing dynamic 
pricing, offering time-based incentives, or sending control signals to 
consumers. DR can therefore be achieved by consumers responding to 
these price signals through changing thermostat settings manually or by 
advanced controllers. For example, Mokhtari et al. [28] designed a deep 
reinforcement learning controller that reacts to dynamic heat price in
formation and conducted a field test in a living lab. They reported a 79 % 
heat cost reduction compared to the default rule-based controller, only 
by intelligently shifting heat demand to cheap hours. Another way to 
activate DR in district heating is the control of forward water temper
ature to the building space heating based on the price signals, which is 
not within the focus of this paper. Dynamic price plays a crucial role in 
DR since it can better reflect true production costs while addressing 
demand fluctuations. If designed correctly, a dynamic price signal can 
incentivize heat consumers to change their energy use behavior, helping 
to balance demand in the network [29,30]. Behavioral studies indicate 
that while economic theory predicts rational responses to price signals, 
real-world behavior often deviates due to biases like loss aversion and 
reference pricing. According to neoclassical economic theory, con
sumers make logical decisions to simply maximize their utility, reducing 
consumption as prices rise and adhering to the law of demand [31,32]. 
However, real-world behavior often deviates from this ideal assumption, 
particularly in situations like district heating, where different percep
tions of thermal comfort exist among heat consumers and understanding 
of dynamic pricing schemes might be limited. Several behavioral eco
nomics concepts can shed light on these deviations. In behavioral eco
nomics, prospect theory explains that human decision-making is often 
irrational and influenced by psychological biases [33]. For example, 
prospect theory explains that consumers are usually more sensitive to 
losses (price increases) than gains (price decreases), implying that heat 
customers might react more intensely to price hikes during peak demand 
than price drops. Additionally, consumers often rely on their own 
reference prices, forming expectations about fair prices based on past 
experiences and perceived norms [34].

Consumers often react to price changes in ways that economists 
consider irrational, meaning that factors other than price play roles in 
that response [34]. For example, Brewer [35] analyzed occupants’ 
heating behavior under dynamic prices in the US and concluded that 
more than half of all individuals are completely ignorant of price 
changes. While Hansen [36] analyzed the impact of district heating 
prices on the heating consumption of Danish households in single-family 
detached houses, found that occupants had significant DR participation 
with district heating prices. Accordingly, when supplied with expensive 

Nomenclature

u Consumer heat price(DKK)
T End time(hour)
D Expected demand (kW)

B Baseline demand (kW)

Y Measured demand (kW)

Cprod Heat production cost(DKK)
Ptarget Target demand (kW)

k Price ratio
t Time (hour)
μ Average value
γ Heat production price (DKK/KWh)
θ Flexibility function parameters

Abbreviations
DR Demand Response
RBC Rule-base Control
FF Flexibility Function
KPI Key Performance Indicator
DKK Danish Krone
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heating, households compensated with lower setpoint by wearing 
warmer clothes, heating only some parts of the house, and lowering 
comfort expectations. A study using data collected from Norwegian 
building stock during the 2021/22 energy crisis analyzed residential 
demand response during extreme electricity prices [37]. They realized 
that an energy saving of 11.4 % and a peak reduction of 10.4 % were 
achieved during this period and concluded that dynamic prices could 
potentially activate demand response in residential households. 
Although DR is widely recognized as an effective strategy for decar
bonization, real-world DR programs often show lower consumer 
participation than predicted due to factors like limited awareness, 
inadequate incentives, and behavioral biases affecting willingness to 
engage [38,39]. It is realized that residents would not be willing to 
comply with DR strategies unless the benefits are clear and worthy [40]. 
Therefore, barriers to the widespread application of DR in district 
heating are not technology-related but rather due to social, economic, 
and regulatory aspects [41]. Additionally, it is also argued that new 
tariffs and business models are required for district heating and cooling 
operators to incentivize consumers for DR purposes. [42] mentions that 

as the price profile determines the demand profile and vice versa, the 
operator must consider consumer behavior when computing the price 
values.

Even though dynamic pricing has been recognized as an effective 
approach for both suppliers and consumers for a long time, it has not yet 
been implemented for district heating. This is mainly due to its unknown 
impact on consumers and district heating companies. There is a clear 
research gap in understanding different consumer types and the effec
tiveness of dynamic pricing for DR in district heating, and to understand 
to what extent different reactions impact consumer’s energy costs. This 
paper aims to fill this gap by conducting a comparative and scenario- 
based analysis. We use a virtual testbed of a neighborhood consisting 
of nine building blocks and use a novel method to design a dynamic 
price for activating DR. The purpose is to test dynamic pricing in district 
heating and reveal the impacts of dynamic pricing on different con
sumers. We do this by designing nine controllers, including fixed con
trollers, manual controllers, and automatic controllers. The controllers 
aim to represent different consumers. We then test the dynamic price on 
these consumers and assess the economic impacts. We then conduct a 

Fig. 1. Reference consumer reactions to dynamic price (by thermostat setpoints), categorized into 3 main groups: Manual-comply, Automated-comply, and 
No-comply.
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scenario-based analysis to understand the overall impacts of different 
DR participation rates and potential risks and benefits. In fact, the so
lutions can help decarbonize the electricity sector as well, since DH can 
provide flexibility on the scales needed to integrate renewables [43].

The paper is organized into seven sections. In Section 1, an intro
duction to the topic is given, and essential terms are described. Section 2
is devoted to describing the considered consumer reaction categories. 
Section 3 is mainly about designing the study frameworks which in
cludes the virtual testbed, dynamic price specifications, and scenarios 
considered. Section 4 is for the findings of the study, including the re
action of the consumers and scenario-based analysis. Key points are 
discussed in Section 5, mentioning essential elements, limitations, and 
future studies. Eventually, Section 6 concludes the paper, with the main 
findings, limitations and recommendations for future research.

2. Consumer reaction to price

In theory, consumers can respond to price changes in various ways. 
Their reactions largely depend on the building application, social in
fluences, household economic status, available control systems, and 
personal preferences [18,44]. While capturing every possible reaction 
type of each heat consumer is impossible, we can identify key categories 
based on representative responses, which can be seen in Fig. 1. The 
categories are designed to span the space of a significant amount of 
possible real-life reactions.

The No-Comply category includes consumers who do not adjust their 
thermostat settings in response to price changes, keeping them fixed. 
This group is divided into three subcategories—Low Setpoint, Medium 
Setpoint, and High Setpoint, each representing a consumer profile who 
keep their temperature setpoint fixed at 20 ◦C or 22 ◦C or 24 ◦C. Many 
buildings fall in this group due to lack of motivation, lack of information 
or lack of equipment. This segment is critical for district heating com
panies shifting to using dynamic pricing.

The Manual-Comply category consists of consumers who respond to 
price changes by manually adjusting their thermostat settings. While 
this method allows for immediate response, it is subject to high vari
ability and uncertainty, as it relies on user behavior. Understanding the 
range of manual reactions and the influence of social, economic, and 
psychological factors require in-depth research beyond the scope of this 
paper. A study on price-responsiveness of 3746 Norwegian households 
in the presence of dynamic electricity prices revealed the potential of 
users who manually complied with dynamic prices in peak reduction 
and suggested that manual compliance can be relied upon in power 
system planning and operation [45]. According to [34], consumers 
typically hold a pre-established notion of a reference price (often based 
on previous experience), and deviations significantly higher from this 
reference price influence their consumption patterns. Based on this 
principle, we designed the Manual-comply consumers and considered 
consumer reaction only in cheap and expensive hours. The first reaction, 
“When-cheap,” is for consumers who comply with the dynamic price 
when heat prices are lower than usual. Some consumers would use low- 
price periods for extra heating of rooms or heating of some specific areas 
such as pools, but increased prices might not affect their reference 
heating behavior. The other consumer, “When-expensive,” is for con
sumers who only change their consumption patterns when the heat 
prices are high. This group responds to high prices and decreases con
sumption to prevent overconsumption. But in low-cost periods, they do 
not change their consumption levels. According to findings of a field test 
study in Norway [45], this reaction type includes the majority of con
sumers who react to prices. Another consumer is the “3-step” which 
combines previous reactions and contains consumers who change their 
heat behaviors under both conditions: when heat prices are cheap or 
expensive. The last group is called Automated-comply and is 

representing consumers equipped with price-responsive controllers. By 
automating the control process, uncertain reactions would be reduced. 
Many types of controllers can be designed for this purpose with different 
characteristics and preferences. In this study, three main consumers are 
considered. A rule-based controller (RBC) assigns an indoor temperature 
setting based on the current heat price. The steps for indoor setpoints 
can vary between 2 to an infinite number based on user preferences. 
Here, five control levels are considered. The next consumer is for con
trollers that linearly change thermostat settings based on heat price, 
providing continuous compliance with price changes. The last type is a 
sigmoid-type controller represents nonlinear compliance with heat pri
ces. This controller shows the fastest changes in thermostat settings in 
mid-price periods and slower changes in low and high-extreme price 
periods.

3. Methodology

The method for designing and conducting the simulations are 
described here. Accordingly, the virtual testbed specifications, the dy
namic price specifications, scenarios and assumptions are described in 
this section. However, for more detailed description about the methods, 
please refer to [46].

3.1. Virtual testbed

Since the real implementation of the analysis was impossible due to 
the need for different controller implementation and the current fixed 
heat price market, a virtual testbed was used here. Modelica (in Dymola 
interface) is used to model the building and neighborhood for the virtual 
testbed, a suitable option for creating dynamic district heating models. 
Different controllers and consumer reaction types are implemented in 
Simulink, which receive heat price and set the indoor setpoint. To 
connect the two models, Functional Mock-Up interface is used. Hereby, 
the reaction to different prices would be calculated as the measured 
demand. The integration process is illustrated in Fig. 2.

3.2. Designing the price signal

To design a price signal that effectively triggers DR in buildings, a 
dynamic model is needed to predict building reactions to different prices 
at different times. For this purpose, the stochastic nonlinear flexibility 
function, developed by Junker et al. [43] is used. The predicted demand 
profile of the building, called expected demand (D), in response to a 
dynamic heat price is calculated by: 

D = FF(u,B, θ) (1) 

In this equation, FF is the flexibility function, u is the heating price, is the 
baseline demand and θ is the parameters of the flexibility function. D, B 
and u are time series data for a period, e.g., 24-hour-long profiles. The 
parameters of the FF (θ) are estimated using a set of historical data 
containing measured time series demand and prices. Measured demand 
is different from the expected demand (D) since the expected demand 
(D) corresponds to the demand estimated by the FF as a result of the 
given dynamic heat price. In contrast, measured demand (Y) is the 
actual demand of the neighborhood after sending the dynamic heat price 
to the virtual testbed and measuring the exact reaction of the buildings. 
Baseline demand (B) is determined using the Modelica model with a 
fixed pricing structure. A baseline scenario is defined to compare the 
impacts of dynamic heat price on each building, as having a flat price of 
591.88 DKK/MWh, the average heat price of a local district heating 
company in Denmark [43]. For further reading about FF, readers can 
refer to [43]. The process for designing dynamic price is shown in Fig. 3.
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The trained FF is coupled with an optimization algorithm to obtain 
the optimum price signal for reshaping the heat demand profile to a 
desired profile. The procedure is suggested and described in more detail 
in [43,47]. The desired profile is called target demand (Ptarget), usually 
given by the district’s heating operator for economic or environmental 
optimization. A more detailed explanation of the process is described in 
[46]. When designing a dynamic heat price based on the target demand 
(Ptarget) and the district’s flexibility, the resulting profile might have a 
higher or lower shift than the baseline flat profile. The resulting dynamic 
price is shifted to an equal average price to the baseline to prevent 
complaints and make a fair comparison with the baseline. When the 
optimum price is achieved by the algorithm, it is then sent to the 

simulation model and the measured demand is calculated. In an ideal 
case, target demand, expected demand, and measured demand should 
be the same, but in reality, there are differences. The difference between 
the target demand and the expected demand comes from the inverse 
optimization non-convergence, leading to suboptimal price profiles. The 
difference between the expected demand and the measured demand, 
however, comes from the stochastic behavior of the consumers. 
Considering a highly accurate model for baseline demand prediction, 
the difference between the measured demand and baseline demand are 
solely the result of dynamic price. In another word, expected demand, 
measured demand and baseline demand are correlated variables. The 
flexibility function model was validated using data from the virtual 

Fig. 2. Workflow for integration of controller and district heating model.

Fig. 3. Workflow for designing dynamic price.
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testbed. The data included timeseries of baseline demand, price and 
measured demand. Then, the expected demand was compared with the 
measured demand from the testbed in response to a random price. The 
model could match the measured demand 6.6 % Mean Absolute Per
centage Error (MAPE). Further details can be found in [46].

3.3. Price ratio

When demand response (DR) is focused on peak shaving, systems 
with lower energy flexibility need more dramatic price adjustments to 
incentivize consumer reactions. However, extremely high prices during 
peak hours may be unfair to consumers and lead to complaints, while 
very low prices could expose district heating operators to increased 
economic risk. Therefore, even after determining an optimal dynamic 
heat price, it may be necessary to adjust prices by rescaling them—
specifically by modifying the standard deviation while keeping the mean 
value constant. This adjustment is applied using the following equation: 

unew = μ(u)+ k(u − μ(u)) (2) 

where unew and u are the new and old prices, μ is the average value 
function, and k is a scaling parameter. Low values of k result in more flat 
profiles, and higher k values provide sharper peaks and valleys. A price- 
ratio (k) value of 1.0 returns the original optimum price. A k value of 0.0 
results in a flat price, representing the baseline demand profile.

3.4. Scenarios of DR

Knowing how consumers react to different prices is essential to un
derstanding the potential impacts of dynamic heat pricing on a larger 
scale. While some consumer response categories were defined in Fig. 1, 
neighborhoods and cities contain a blend of these behaviors, making 
overall responses difficult to predict. Without historical data on price 
reactions, it’s challenging to characterize these behaviors accurately. In 
addition, no relevant information regarding this could be found in the 
literature. Therefore, we considered various scenarios featuring 
different combinations of consumers and conducted analyses on each 
scenario to gain insight into potential outcomes. Since this study aims to 
analyze the impacts of the response level of consumers to price, these 
scenarios are designed to cover various responsiveness levels to dynamic 
prices and represent different situations. The scenarios are described in 
Table 1.

Scenario 1 represents an ideal case in which all buildings are 
equipped with automatic controllers that adjust to price changes 
seamlessly. In contrast, Scenario 5 represents the opposite extreme, 
where no buildings respond to price changes. The remaining scenarios 
illustrate varying mixes of controllers, capturing a range of possible 
consumer responses to dynamic pricing.

3.5. Case study

The case study is a residential multi-family building with 45 flats in 
Sønderborg, Denmark. The building was constructed in 1971 and is 
heated by radiators. To have a controlled study on consumers’ reactions 
to price changes, 9 identical buildings are considered. A detailed 
description of the building and network models can be found in [46]. 
The “MixedAir” component from Modelica Buildings Library is used to 
create the building thermal models. Further information about the 
building can be found in Appendix. A photo of the building and an 
illustration of the neighborhood model are shown in Fig. 4.

Simulink Matlab is used to model the nine reference consumers 
described in Fig. 1 and is coupled with the neighborhood model using 
Functional Mock-up Interface [48]. For validation of the neighborhood 
model, we used daily historical measured data from substations for 30 
days in January. The MAPE of 4.8 %–8.9 % was achieved for the sub
stations. Details about the validations can be found in [46].

3.6. Dynamic price evaluation

A baseline case is defined for each controller to assess the effec
tiveness of dynamic heat price for each building and the total neigh
borhood, where the heat cost and average indoor temperature are 
calculated at a flat price. The baseline is different for each controller 
since controllers react differently to a given fixed cost. Then, the dy
namic price impacts are compared with the baselines. The simulations 
for analyzing dynamic heat price’s effect are conducted on 1st February 
2022. The target demand is considered as having lower morning (6–9) 
and evening (16–20) peak demands but higher consumption around 
noon (11–14). Dynamic heat price is then designed accordingly, and the 
impacts on the buildings and the neighborhood are analyzed. For the 
economic analysis of each consumer, a one-week simulation is con
ducted in February 2022.

3.7. Production costs

From the district heating operator’s point of view, an economically 
effective DR would eventually lead to lower production costs. This can 
be achieved by setting the target demand based on production costs. 
Production costs can vary based on the availability of heat sources, 
carbon emission taxes, the need for peak boilers, fuel prices, etc. 
Therefore, a production price (γ) can be defined to be the basis for 
finding target demand. This way, the production cost at the time t can be 
defined as: 

Cprod,t = γtYt (3) 

A certain production price profile is considered to find the target de
mand. Accordingly, the target demand is assumed to have an inverse 
production cost profile. Then, the optimum heat price is calculated. This 

Table 1 
Considered scenarios of DR for reaction to prices in a neighborhood.

Scenario Description Corresponding to

1 All consumers using automated controllers 100 % Automated
2 The majority of consumers react to the prices automatically or manually 50 % Automated 

33 % Manual 
17 % No-comply

3 There is an even mixture of all types of controllers 33.33 % Automated 
33.33 % Manual 
33.33 % No-comply

4 Half of the consumers have a No-comply strategy 17 % Automated 
33 % Manual 
50 % No-comply

5 No user complies with the dynamic price 100 % No-comply
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setup could also be used to study more realistic variations in production 
prices e.g., a very low price in periods with high availability of industrial 
waste heat.

3.8. Assumptions

This study requires many assumptions and sets boundaries. The 
setpoint curves are considered solely based on cost, and we ignore the 
building characteristics, stochastic behavior of occupants, heating sys
tem efficiency, etc. It is also considered that the heating systems are 
sized perfectly to reach the setpoints, and there is no window opening or 
other unusual behavior to disrupt the heating. As [41] showed in his 
study on measured data, the reaction of occupants to dynamic prices is 
extremely stochastic. However, we considered the occupants to always 
have a fixed behavior and always have access to react to prices. The 
flexibility function that is used to characterize the flexibility of con
sumers considers the behavior to be the same throughout time. It does 
not take into account the external factors, behavioral aspects or dynamic 
behaviors. The virtual testbed does not include influencing factors such 
as window opening, shading and stochastic behaviors. Although these 
assumptions deviate from the real-world conditions, they enable a 
focused study on the behavior of consumers and controllers to dynamic 

price.

4. Results

This section is dedicated to present the findings of the analyses. We 
start by presenting the reaction of the whole neighborhood and indi
vidual buildings to dynamic price, proceed with testing price ratio, and 
then we focus on economic impacts on each consumer, and the total 
district.

4.1. Reaction of controllers to dynamic price

This section analyzes the impacts of a given dynamic price on the 
neighborhood and each building’s demand profile. An artificial target 
demand is considered with the purpose of reducing consumption during 
mornings and evenings. The dynamic price is designed accordingly, and 
the measured demand of the neighborhood is calculated. Results can be 
seen in Fig. 5.

It can be seen at the bottom of the figure. The measured demand is 
following the target demand in most hours, but is accompanied by some 
deviations. An upward shift of the measured demand (Y) compared to 
target demand (Ptarget) can be seen between hours 0–4 and 20–24, which 

Fig. 4. Photo taken outside one of the buildings, (b) white-box model of the neighborhood created using Dymola.

Fig. 5. Obtained measured demand (Y), baseline demand (B), and target demand (Ptarget) followed by the optimum heat price (u) at the bottom.
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is probably due to the sudden behavior of the Sigmoid controller in this 
period, according to Fig. 1. At 6, when the baseline peaks at 1800 kW, 
the target demand is 55 % lower than the baseline, and a relatively 
expensive heat price of 1930 DKK/MWh is suggested. This has reduced 
the demand by 33 %, which is not enough to reach the target demand. 
Between 10 and 14, the target demand is 52 % higher than the baseline 
demand, so the price gets as low as 235 DKK/MWh. This price could shift 
the baseline demand upwards by 44 %, which is only 8 % lower than 
target demand. This suggests that buildings of this neighborhood are 
responding better to price peaks than price valleys. The individual re
action of each of the nine reference consumers to the dynamic price is 

shown in Fig. 6.
The first row depicts buildings with the reaction category of “No- 

comply”, described in Fig. 1. Building demand follows the baseline 
profiles in all three buildings of this category and only differs in the 
offset, where the Low setpoint has the lowest demand, and the High 
setpoint has the highest demand. The three buildings represent the 
inflexible part of the neighborhood and limit the activated DR. Second 
row is for buildings with “Manual-comply”. The building with When- 
cheap consumers is responding to prices during cheap hours (between 
10 and 14) when the prices are lower than 400 DKK/MWh. When- 
expensive controller responds during peak hours when prices are 

Fig. 6. Reaction of each reference consumer to dynamic price. The area in cyan represents times when consumption is lower than baseline, and red represents times 
when consumption is higher than baseline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Neighborhood measured demand (Y) profiles and (b) heat consumption costs and heat demand of the neighborhood given different price ratio values.
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higher than 1000 DKK/MWh, and normal operation in other periods. 
The 3-step controller type combines previous controllers and activates in 
cheap and expensive periods by maximizing and minimizing the ther
mostat settings. The bottom row is for buildings that are controlled using 
smart price-responsive controllers. For the RBC controller, the thermo
stat setting changes step by step as the price increases or decreases. 
Linear controller has a similar heat consumption to RBC controller. 
However, the Sigmoid controller represents sudden changes in heat 
consumption in mid-price periods, which can be recognized from the 
figure. The indoor temperatures for each controller are illustrated in 
Appendix. Due to this controller behavior, heat consumption in the start 
and ending hours are quite different than the baseline, which might be 
the reason for the upward shift in measured demand compared to target 
demand at the start and end of Fig. 6.

4.2. Impacts of price ratio on DR

The impacts of the price ratio on the total demand of the neighbor
hood are depicted in Fig. 7.

As described in Section 3.3, k = 0.0 results in a flat profile and is the 
baseline demand. It can be seen that even with small changes in heat 
prices (k = 0.3), heat demand is reduced notably compared to the 
baseline due to the aggregated effect in large-scale DR. By increasing the 
number of buildings that react to price changes, the flexibility of the 
neighborhood will grow and even small changes could achieve a high 
DR. Accordingly, total heat demand and heat consumption costs were 
reduced by 5.4 % and 8.8 % respectively, by shifting from a flat price (k 
= 0) to a slightly dynamic price (k = 0.3). The demand profiles of k = 1.3 
and k = 1.0 are quite similar because, in extreme periods, only the 
Automated-comply controllers are still reacting to price changes. 
Manual-comply controllers could not further comply with prices when 
prices pass a certain threshold. This is in line with findings of a field test 
study on price-responsiveness of residential buildings in Norway in 
response to dynamic prices [49]. This shows that maximum flexibility 
potential is leveraged and further increase of the scaling factor would 
not change the demand profiles much. The heat demand costs were 
reduced by 28.7 % for k = 1.3, which has the highest peaks and valleys 
(Fig. 8).

Fig. 7.b shows that heat consumption costs reduce seamlessly as the 
price ratio increases. However, heat demand decreases until k = 0.7 and 
then increases. The sudden jump in the total heat consumption fromk =
0.7 to k = 1 is mainly due to the response of manual controllers that have 
been activated after prices reached low enough values. Accordingly, 
heat demand has increased during cheap hours, but the costs are still 
reduced. When k is increased from 1 to 1.2, heat demand is only 
increased by 2 %, but the heat cost is reduced by 10 %.

4.3. Dynamic heat price evaluation

The results of assessing the impacts of dynamic heat price on each 
controller are shown in 8.

The heat cost of consumers with No-comply consumers is similar to 
that of a flat price because the mean value of the dynamic heat price is 
fixed to the flat price. This shows that dynamic heat prices would have a 
minor economic impact on inflexible consumers. All remaining reactions 
led to savings regardless of the reaction type. According to the figures, 
When-cheap consumers saved slightly more (2.2 % more) in costs than 
when-expensive consumers. This is because consumers who only in
crease their thermostat during cheap hours store heat in building ele
ments. During the following expensive hours, the heating system can be 
turned off. The indoor temperature graph shows that this building also 
has a higher average indoor temperature than the When-expensive 
consumer due to frequent increases in indoor setpoint. The 3-step 
controller has an even higher saving potential with a relatively higher 
indoor temperature than the baseline. The automated controllers pro
vide higher savings potential, while Sigmoid delivers the highest po
tential but at the expense of lower indoor temperature. Linear 
controllers and RBC have slightly higher indoor temperatures than 
baseline while providing significant savings. The Sigmoid controller 
reduced the heat costs by 46.5 % but at the expense of 1.2 ◦C lower 
average indoor temperature. At the same time, the linear controller 
reduced heat costs by 46.0 % while the average indoor temperature was 
0.16 ◦C higher than the baseline. Eventually, the controllers of Manual- 
comply indicate that a 3-step control can reduce the costs by 41.0 % 
while keeping the indoor average temperature 1.2 ◦C higher than the 
baseline. This means that with almost no capital costs or instruments, 
users can significantly benefit from dynamic heat prices. These findings 
show that the controllers could achieve cost saving by shifting loads 
from expensive to cheap hours. In some cases, the indoor temperature is 
increased by 4 ◦C, but still, cost saving is achieved, showing the effective 
potential of load shifting for cost saving.

4.4. Scenario-based analysis

This section is dedicated to results obtained from analyzing the five 
scenarios introduced in Section 3.4. Fig. 9 illustrates the impact of each 
scenario given the dynamic heat price on consumer reaction and heat 
costs.

Target demand is shown by the dashed line, and the corresponding 
optimum heat price is depicted by the gray line in the background. The 
total demand of the neighborhood in each scenario is plotted. All Sce
narios showcase notable peak load potential during morning and eve
ning peaks. Peak loads have reduced by 65 %, 55 %, 44 %, and 34 % by 
Scenarios 1–4, respectively. Relevant experimental studies show up to 
30 % peak reduction due to small scale experiment, using fixed heat 
price or tight comfort bounds [25,50].

Accordingly, Scenario 1 has the closest match with the target de
mand while Scenario 5 (i.e. corresponding to the baseline demand) has 
the lowest compliance. The figure shows that despite all consumers 
complying automatically with prices (Scenario 1), the target demand 
still could not be reached. This indicates the flexibility limit of the 
neighborhood, which in this case is driven by the indoor setpoints. In the 
right figure, the total heat consumption cost of each scenario for the 
district is illustrated. Accordingly, Scenario 5 has the highest heat con
sumption cost, which is the baseline scenario. Scenario 4 has 15 % less 
consumption cost than Scenario 5, due to a small number of consumers 
complying with prices. Scenarios 3 and 2 have respectively reduced 
consumption costs by 17 % and 19 % compared to Scenario 5, due to 
lower consumption during peak hours and higher consumption in cheap 
hours. However, Scenario 1 shows higher consumption costs. This is due 
to higher consumption during cheap hours than in other scenarios, 
leading to higher total consumption costs. This highly depends on the 
controller type; in this case, the automatic controllers have a major role 

Fig. 8. Differences in heat costs (bars) and average indoor temperature (line) 
compared with baseline for each reference consumer. Baseline is defined as 
having a flat heat price during the same period.
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in causing higher consumption costs. Fig. 10 shows the effects of dy
namic price for each scenario from the production cost perspective.

Fig. 10.a shows the production cost and target demand profiles, as 
described in Section 3.7. The dynamic heat price is calculated accord
ingly, and it can be noted that it follows the same pattern as the pro
duction cost profile. Fig. 10.b shows the production cost reduction of 
each scenario compared to the baseline. Accordingly, Scenario 4 
(composed of 17 % Automated-comply and 33 % Manual-comply con
sumers) could reduce costs by 27.8 %. Comparing scenarios C and D, it 
could be realized that only by increasing the share of heat consumers 
with Automated-comply by 16 % could the cost reductions increase by 
9.2 %. In the same manner, Scenario 2, with 33 % more consumers with 
Automated-comply, has a 44.6 % reduction in production costs. 
Comparing this figure with Fig. 9.b shows that although Scenario 1′s 
heat consumption costs are lower than Scenario 5′s, the production costs 
are reduced significantly. Eventually, it can be concluded that even 
consumers who comply manually can provide a notable demand 
response to reduce production costs in district heating. However, these 
reductions can be further increased by installing automated consumers 
and attracting more consumers to comply with dynamic prices.

We realized that production costs can be reduced notably by 
applying dynamic prices for district heating. The level of reduction de
pends on the scale and intensity of compliance with prices. Therefore, it 
is important to know the factors affecting consumer’s willingness to 

accept dynamic prices [30]. However, our findings suggest that even 
with modest demand response scale, peak consumptions can be reduced, 
leading to notable cost saving.

5. Discussion

Social acceptance is crucial in a changing paradigm, as it fosters 
public support, eases the adoption of new solutions, and ensures that 
innovations are embraced rather than resisted. When shifting from the 
prevailing flat heating prices to a dynamic heat price, consumer 
acceptance should be considered one of the most influential factors in 
successful demand response participation. In a qualitative interview 
study by [51] when describing the benefits of load shifting using smart 
dishwashers and washing machines, one of the interviewees com
mented, “I could postpone washing my clothes if I was informed how 
much euros I was saving by doing this.” This highlights the importance 
of clarity in people’s attitudes towards load shifting. People understand 
that load shifting is not a free lunch and must sense how much they are 
paid in exchange for extra effort or sacrificing comfort. People usually 
prefer simple flat prices due to their simplicity. People will only embrace 
dynamic pricing when the advantages are clear and encouraging 
enough. Moreover, dynamic pricing will not be accepted if people 
perceive it as unnecessary complexity or adding additional costs to their 
bills. According to [34], some people strongly resist price 

Fig. 9. (a) Total neighborhood demand (Y) of each scenario, target power (Ptarget), and the given heat price signal (u). (b) Total daily heat consumption cost for 
each scenario.

Fig. 10. (a) Heat production and consumption prices along with target demand.
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discrimination, perceived as unfair or arbitrary. Therefore, to ensure 
people’s positive attitude towards dynamic prices, it should be the same 
for all consumers. The way price information is shared is also crucial in 
determining the level of compliance with dynamic prices [49]. A com
plex and unclear approach to sharing price information would hinder 
the participation of most households. In contrast, a simple and easy 
platform, e.g., applications on phones, SMS messages when prices are 
low or high, or an integrated API interface, would encourage more 
people to comply with prices.

There is an argument that low-income households would have high 
economic motivation to comply with dynamic prices, which are great 
assets for peak shaving. However, Hansen [36] argues that low-income 
households with inefficient buildings already use their maximum heat
ing capacity to maintain thermal comfort, leaving no room for further 
response to prices. Conversely, high-income households with more 
efficient buildings and heating systems would have more potential to 
comply with dynamic prices. Still, on the other hand, economic motives 
might not be encouraging enough for these households. Therefore, other 
advantages of dynamic prices, e.g., environmental and societal benefits 
together with financial benefits, should also be clearly stated to promote 
both parties.

Results of this study and another relevant study [49] showed that 
users who manually comply with dynamic prices can provide flexibility 
for load shifting to some extent. The advantage of this method is that it 
requires no upfront costs for consumers, and users take full control of the 
systems. However, this type of control is prone to significant un
certainties and does not usually extract the full flexibility potential of the 
buildings. More importantly, manual control requires frequent adjust
ments, leading to response fatigue, where consumers get tired of 
adjusting thermostat settings repeatedly and lose motivation to act over 
time []. This issue is resolved in automated controllers, where the 
response is automatic, while consumers can override the actions [52]. 
This is important information for energy policy to encourage sector 
development in this direction. Even though this study shows significant 
cost savings, savings might be limited in practice. The preset high indoor 
comfort range might not be desired by residents, or the designed dy
namic prices might have a low peak-to-valley, limiting the savings and 
peak reductions.

This study showed that automatic control solutions for heating sys
tems provide the highest economic benefit compared to manual 
occupant-based control. However, automatic control requires occupant 
acceptance and trust. As mentioned in [53], building trust in society is 
one of the most critical factors in accepting automation in control. 
Karjalainen [51] conducted a study based on qualitative interviews to 
reveal occupants’ attitudes toward levels of automation in building 
energy systems. The interviews revealed a large amount of mistrust to
wards automation. Based on the feedback from interviewees, most 
people did not accept full automation in control due to mistrust, low 
savings, discomfort concerns, personal preferences, etc. However, they 
neither preferred zero automation at all. Most people preferred a 
compromise between automation and manual control, where occupants 
had the full authority to override the settings and have the final control. 
This should be considered when designing the automatic controllers for 
this purpose.

While this study focused on analyzing various thermostat controller 
types, it did not include more advanced controllers, such as Model 
Predictive Controllers and Reinforcement Learning controllers, which 
employ intelligent decision-making. This omission is primarily due to 
their limited adoption in the current heat control market, largely 
resulting from their complex modeling requirements. Nonetheless, these 
advanced controllers are an active area of research and hold significant 
promises for broader implementation soon. In particular, when real-life 
data with dynamic pricing becomes available such that the parameters 
describing the observed flexibility function can be estimated/calibrated. 
Consequently, future real-life dynamic pricing studies should incorpo
rate these controllers’ analyses to ensure comprehensive design 

considerations.

6. Conclusion

This study used a scenario-based approach based on a virtual testbed 
with nine identical buildings to examine the impacts of dynamic heat 
price as a DR strategy in district heating. The buildings were acquainted 
with a unique DR behavior, and the impacts of dynamic price were 
analyzed for each consumer. Afterward, to reveal the probable outcomes 
of shifting from flat to dynamic price, five possible scenarios for DR 
participation were analyzed. Dynamic price was designed using an 
inverse-optimization method based on energy flexibility of the con
sumers to activate DR. Results show that shifting from a flat price to a 
dynamic price can significantly reduce heat consumption costs and 
reshape the heat demand to match with a target demand profile set by 
district heating operators. The target demand can be set for peak load 
shifting, cost minimization, efficiency improvement, etc.

Dynamic heat prices can encourage consumers to shift their heat load 
to off-peak hours, leading to a more balanced energy system and facil
itating the integration of renewable energy sources. While consumers 
using automated controllers showed the highest economic benefit, even 
manual adjustments in response to price signals can result in significant 
cost savings. Accordingly, the analysis results indicated that any 
compliance with price changes would benefit both consumers and op
erators economically. While the results show that occupants can save 
energy by only reducing their thermostat during expensive hours, in the 
real world, this can be an overwhelming task. Automatic controllers can 
resolve this issue but require upfront costs for implementation. Auto
matic controllers showed the highest saving potential, whereas a linear 
controller could save up to 46 % of heat costs while maintaining indoor 
thermal comfort. Consumers who manually comply with price changes 
could save up to 41 % of their heating costs, showing that notable sav
ings could be obtained with almost no upfront costs. Results of analyzing 
possible scenarios for demand response indicated that dynamic heat 
price could lead to notable savings in production costs by shifting pro
duction to cheap hours and avoiding expensive productions. Accord
ingly, Scenario 1, which represents an ideal district with automated 
controllers, could save 52.6 % of production costs compared to the flat 
price. Scenario 4, representing a district with 17 % of consumers having 
Automated-comply and 33 % Manual-comply consumers, could reduce 
production costs by 27.8 %. This study demonstrates that production 
costs and consumer heating bills could be reduced even with consumers 
with no smart controllers and only manually complying with dynamic 
prices. In countries where district heating companies are non-profitable, 
such as Denmark, lower production costs would lead to cheaper district 
heating for consumers. In addition to economic benefits, peak fossil-fuel 
boilers can be limited by sending the right price signal to consumers and 
encouraging consumers to comply with prices in any form.

6.1. Limitations

Due to the current district heating market with fixed price and the 
level of complexity, it was not possible to conduct a real experiment. 
Therefore, many assumptions had to be used to conduct this study. We 
used a virtual testbed instead of real buildings to conduct the analysis. 
The model we used for the virtual testbed does not cover these stochastic 
behaviors. We considered nine different reaction types to price. While 
the assumed consumer types mimic specific groups of buildings, many 
buildings and consumer behaviors are left out of the study. The intro
duced consumers in the study are considered to have a fixed behavior, 
meaning that a consumer’s thermostat level is only a function of price. 
Moreover, consumers might change their heating behavior from one 
consumer to another. For example, a household that does not comply 
with price changes during weekdays due to working hours can manually 
comply with prices on weekends. Another example is a building 
equipped with a price-responsive thermostat, where consumers override 
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the settings under special circumstances, e.g., having guests. In addition, 
certain consumers might not fit into the introduced categories. For 
example, some users might value heat during expensive hours more than 
cheap hours and think that availability might be limited. This behavior 
results from the scarcity effect, a form of irrational behavior by con
sumers when reacting to prices [54]. In practice, the long transmission 
pipes from the district heating plant to consumers would introduce 
thermal delays and long response times. This can impact the design and 
implementation of dynamic prices, but it was not considered in this 
study.

6.2. Recommendations and future research

The methods and findings of this study can be used as a guideline for 
operators and heat consumers to consider dynamic prices as an effective 
approach to reducing costs. Dynamic heat prices showed promising 
potential for consumer cost savings, increased operational efficiency for 
district heating operators, and reduced carbon emissions. There are 
mainly two pathways to investigate dynamic pricing in heating. First is 
to find ways to increase acceptance and willingness to comply with 
dynamic pricing. This includes testing the long-term impacts of dynamic 
pricing on consumer behavior, considering factors like changing 
weather patterns and evolving consumer preferences. The other aspect 
to study is the technical side of dynamic pricing. Topics such as 
designing dynamic price, testing different controllers, leveraging dy
namic price to integrate waste heat from industries, data centers, etc., 
into district heating networks are important to reveal their potential and 
challenges. Sector coupling and integration of renewable heat in district 
heating is reported to be easier with dynamic heat price. Dynamic heat 
prices are also reported to be a proven solution to solve common issues 

in district heating, such as network congestion, demand and supply 
mismatches, dependency on peak backup boilers, overpriced heating, 
etc. These topics are crucial for the decarbonization of the district 
heating sector and require a series of studies.
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Appendix 

Flexibility function parameters of the different scenarios of DR are shown in the following Table A1.

Table A1 
Flexibility function parameters for each scenario.

Parameter Scenarios
A B C D

Δ 1 1 0.90 0.67
C 131.686 62.39 54.97 45.36
k 3.31 2.44 2.55 3.24
ε 0.25 0.13 0.12 0.11
α1 − 0.5 − 0.5 − 0.5 − 0.5
α2 1 0.66 0.60 0.53
α3 − 1 − 0.66 − 0.6 − 0.53
α4 1 1 1 1
β1 0.04 0 0 0
β2 0.02 0 0 0
β3 0.16 0.40 0.43 0.49
β4 0.21 0.15 0.13 0.07
β5 0.1 0.10 0.09 0.07
β6 0.47 0.35 0.32 0.24
β7 0 0 0.04 0.14

Parameter shows the total capacity of the consumer’s flexible energy, which depends on the thermal properties of the building, controller type, and 
indoor setpoint limits. A higher setpoint limit range will result in a higher flexible energy (C). Δ is the proportion of flexible demand indicating the 
relative available flexible demand to the baseline demand. ε is a tuning parameter that shows how the building would move toward the baseline over 
time. k is called energy flexibility eagerness, indicating the speed of demand changes and are tuning parameters of the FF. More descriptions of the 
parameters can be found in [47]. It should be noted that FF could not fit Scenario 5 due to its inflexibility.

The indoor temperatures associated with the response of each controller is shown in Fig. A1. 
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Fig. A1. Indoor temperatures of each reference consumer, responding to the dynamic price.

The initial indoor condition was set to 21 ◦C. The first row presents controllers with fixed thermostats and ignoring the dynamic price. The indoor 
temperatures try to follow the setpoint, except for the High setpoint, where the heating systems struggle to reach the setpoint quickly. The indoor 
temperature for When cheap controller jumps from 9 to 15, where it is cheap. The indoor temperature for all controllers is within the defined comfort 
bounds (i.e., 18 ◦C–26 ◦C). A response delay of around one hour can be realized for all controllers due to the thermal inertia of the building.

Since the exact information on the most building construction elements were not available, databases such as Danish Building and Housing 
Register (BBR), the Danish Building Standard (DS/EN 15251) [55] and the TABULA project [56] were used to create building models. The components 
used for modelling are listed in Table A2.

Table A2 
Components used in creating building models.

Component Materials (thickness)

Roof Roof tiles (59 mm) 
Insulation (300 mm) 
Hollow core concrete (270 mm)

Exterior wall Brick (108 mm) 
Insulation (375 mm) 
Aerated concrete (100 mm)

Floor/ceiling Concrete (220 mm) 
Insulation (93 mm) 
Concrete (80 mm) 
Oak planks (14 mm)

Ground floor Insulation (350 mm) 
Concrete (120 mm)

Windows Clear double glazing with air
Internal wall Concrete (200 mm)

Data availability

Data will be made available on request.
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