

Cost-effective and replicable RES-integrated electrified heating and cooling systems for improved energy efficiency and demand response.

D3.2 - Holistic SEEDS Evaluation Framework

WP3, Task 3.3 Use Case Scenarios and KPIs definition for Automation Systems

April 2025

Author(s): Tsompanidou Eleni (CERTH), Iakovos Michailidis (CERTH), Achilleas Andronikos (CERTH), George Karatzinis (CERTH), Kyriaki Fanaridou (CERTH), Apostolos Gkountas (PTHERM), Evangelia Rigati (RENEL), Nikolaos Rapkos (RENEL), Pantelis Botsaris (DUTh), Lieve Helsen (KUL), Louis Hermans (KUL), Filip Jorissen (BWS), Ann Bruggeman (Sweco), Robin Haesen (SWECO), Arno Marechal (Sweco), Marie-Louise Krogh (CDK), Shahab Tohidi (DTU - Compute), Erik Gramc (Petrol), Bernard Ženko (JSI), Profigram (Peter Grabner), Fair C (György László), ÉMI (Károly Matolcsy)

DISCLAIMER

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

COPYRIGHT NOTICE

©2024 SEEDS Consortium Partners. All rights reserved. SEEDS project is co-funded by the European Union's Horizon Europe innovation actions programme under the Grant Agreement n°101138211. For more information on the project, its partners and contributors, please see the SEEDS website (*https://project-seeds.eu/*). You are permitted to copy and distribute verbatim copies of this document, containing this copyright notice, but modifying this document is not allowed. All contents are reserved by default and may not be disclosed to third parties without the written consent of the SEEDS partners, except as mandated by the European Commission contract, for reviewing and dissemination purposes. All trademarks and other rights on third party products mentioned in this document are acknowledged and owned by the respective holders. The information contained in this document represents the views of SEEDS members as of the date they are published. The SEEDS consortium does not guarantee that any information contained herein is e-free, or up-to-date, nor makes warranties, express, implied, or statutory, by publishing this document.

DELIVERABLE INFORMATION

Grant agreement	101138211
Project title	Cost-effective and replicable RES-integrated electrified heating and cooling systems for improved energy efficiency and demand response.
Project acronym	SEEDS
Project coordinator	Danmarks Tekniske Universitet - DTU
Related work package	WP 3
Related task(s)	Task 3.3 - Use Case Scenarios and KPIs definition for Automation Systems.
Lead organisation	CERTH
Contributing partner(s)	PETROL, JSI, DTU - Compute, CDK, Sweco, KUL, BWS, SMENS, ÉMI, FairC, DUTH, RENEL
Due date	30.04.25
Submission date	07.05.25
Dissemination level	PU

REVISION AND HISTORY CHART

Version	Date	Editors	Description	
V0.1	01.11.24	CERTH (Eleni Tsompanidou)	First ToC	
V0.2	04.02.25	KUL (Lieve Helsen , Louis Hermans, BWS (Filip Jorissen), SWECO (Ann Bruggeman, Arno Marechal)	Addition of Belgium pilot use cases	
V0.2	04.02.25	CDK (Marie-Louise Krogh), DTU - Compute (Shahab Tohidi)	Addition of Danish pilot use cases	
V0.2	04.02.25	Petrol (Erik Gramc), JSI(Bernard Ženko)	Addition of Slovenian pilot use cases	
V0.2	04.02.25	DUTh (Pantelis Botsaris), CERTH (Tsompanidou Eleni, Iakovos Michailidis, Achilleas Andronikos, George Karatzinis, Kyriaki Fanaridou), PTHERM (Apostolos Gkountas), RENEL (Nikolaos Rapkos, Evangelia Rigati),	Addition of Greek pilot use cases	
V0.3	05.02.25	CERTH (Achilleas Andronikos)	Addition of KPIs related to automation systems and platforms	
V0.3	05.02.25	RENEL (Evangelia Rigati)	Addition of KPIs related to electrification systems	
V0.3	05.02.25	KUL (Louis Hermans)	Addition of KPIs related to smart building services	
V0.3	05.02.25	DTU - Compute (Shahab Tohibi)	Addition of KPIs related to smart grid services	
V0.4	01.04.25	CERTH (Tsompanidou Eleni)	Review all the use cases Full draft ready for peer review before official review	
V06	10.04.25	BWS (Filip Jorissen), Petrol (Erik Gramc), DTU - Compute (Shahab Tohibi)	Additional info added	
V0.7	16.04.25	SWECO (Natan Vandeginste), INNOVATIO (Konstantinos Arvanitis)	Official review	
V0.75	29.04.25	CERTH (Tsompanidou Eleni), Károly Matolcsy (ÉMI)	Address the reviewer's comments Addition of Hungarian pilot use cases	
V0.80	06.05.25	SWECO (Natan Vandeginste)	Oficial review	
V1	07.05.25	CERTH (Tsompanidou Eleni)	Final Deliverable	

EXECUTIVE SUMMARY

This document outlines the holistic technical evaluation framework developed for the SEEDS project, incorporating contributions from all technical work packages (WP2–WP5). It focuses on defining use cases, test scenarios, and key performance indicators (KPIs) to guide the evaluation of the project's innovative systems and platforms. Specifically:

- WP2 focuses on "electrification systems."
- WP3 addresses "envisioned automation systems and platforms"
- WP4 examines "smart building services."
- WP5 explores "smart grid services."

Work package/task leaders, pilot leaders, and technology providers collaborated to define use cases for all SEEDS pilot sites (Belgium, Denmark, Greece, Hungary, and Slovenia). The use case methodology follows the standardized IEC 62559 framework, offering a structured approach to describe interactions between actors (users) and systems. A total of 19 use cases have been defined: 4 for the Belgian pilot, 3 for the Danish pilot, 4 for the Hungarian pilot, 6 for the Greek pilot, and 2 for the Slovenian pilot.

Beyond the use case definitions, this deliverable includes the definition of KPIs. These KPIs are designed to evaluate the progress and performance of pilot activities within each technical work package (WP2-WP5). The document specifies the KPIs relevant to each pilot site and details the monitoring levels required for systematic evaluation.

By consolidating the planned outcomes and evaluation strategies from WP2 to WP5, this deliverable establishes a foundational framework for assessing the impact and effectiveness of the SEEDS project innovations once implemented.

TABLE OF CONTENTS

1.	INTRODUCTION	
1.1.	AIMS AND OBJECTIVES	
1.2.	RELATION TO OTHER AG	TIVITIES IN THE PROJECT
1.3.	REPORT STRUCTURE	
2.	METHODOLOGY	
2.1.	USE CASE METHODOLO	γ
2.2.	KPIS COLLECTION	
3.	USE CASES	
3 1		ри от (BE) 16
3.1. 2	1 1 UC - RE 1: Can	uring of telemetry data 16
.3	1.1. UC – BE 2. Moo	el predictive control using calibrated models 24
3. de	1.3. UC – BE 3: Itera emand 29	tive HVAC design to propagate the electrification of thermal energy
3.	1.4. UC – BE 4: Imp	roving thermal system designs by using integrated optimal design
т	ethodologies	
3.2.	USE CASES OF DANISH	ист (DK)47
3.	2.1. UC – DK 1: Cap	uring of telemetry data47
3.	2.2. UC – DK 2: Mod	el predictive control using Grey-Box model for the Danish Pilot 54
3.	2.3. UC – DK 3: Flex	bility function integrated flexibility services59
3.3.	USE CASES OF GREEK P	LOT (GR)
3.	3.1. UC – GR 1: Elec	trification of thermal energy demand66
3.	3.2. UC – GR 2 : Mini	mization of Life Cycle Environmental Impact through Circular Design
Pr	inciples	
3.	3.3. UC – GR 3: Cap	uring of telemetry data79
3.	3.4. UC – GR 4: Acti	ve control of electrification systems87
3.	3.5. UC – GR 5: Pred	ictive Maintenance of Heat Pump and PV Systems
3.	3.6. UC – GR 6: Parl	cipation in Demand Response Schemes102
3.4.	USE CASES OF HUNGAR	an pilot (HU)
3.4	4.1. UC – HU 1: Settin	g up and testing the system to be deployed109
3.4	4.2. UC – HU 2: Contro	I system design and construction
3.4	4.3. UC – HU 3: Integr	ation of Flexibility into MPC and Interaction with DSO
3.4	4.4. UC – HU 4: Integr	ation of Electric Vehicle Charger into the MPC Framework
3.5.	USE CASES OF SLOVENI	AN PILOT (SL)
3.	5.1. UC – SL 1: Capi	uring of telemetry data163
3.	5.2. UC – SL 2: Prov	ding flexibility services

4.	KPIS		76
4.1	. KPI	S RELATED TO ELECTRIFICATION SYSTEMS	76
4	4.1.1.	Increase of RES power at demo site	176
4	4.1.2.	Renewable energy production	177
4	4.1.3.	Energy demand reduction	177
4	4.1.4.	Increase of energy production from the innovative system compared to conventio	nal
F	RES sys	tems	178
4	4.1.5.	GHG emissions reduction across the lifecycle	179
4	4.1.6.	Carbon payback period	179
4	4.1.7.	Recyclability of the system	180
4.2	2. KPI	S RELATED TO AUTOMATION SYSTEMS AND PLATFORMS1	81
4	4.2.1.	Energy Efficiency Improvements	181
4	4.2.2.	Increased system flexibility for energy players	182
4	4.2.3.	Platform Downtime	183
4	4.2.4.	ICT Response Time	184
4	4.2.5.	Improved Interoperability	184
4	4.2.6.	Quality of Open Data	185
4	4.2.7.	Cost Reduction from Flexibility	186
4	4.2.8.	System Efficiency	187
4	4.2.9.	Automation System Reliability	188
4	4.2.10.	Number of Connected Devices or Systems	188
4	4.2.11.	API Response Time	189
4	4.2.12.	Semantic Accuracy	189
4	4.2.13.	Scalability in Connected Devices	190
4	4.2.14.	Task Completion Accuracy	190
4	4.2.15.	User Satisfaction with Automation Systems	191
4.3	. KPI	S RELATED TO SMART BUILDING SERVICES1	92
4	4.3.1.	Total Operational Cost per m² per Year	192
4	4.3.2.	Annual CO2 Emissions	192
4	4.3.3.	Annual Primary Energy Use per m ²	193
4	4.3.4.	Annual Electricity Use per m ²	193
4	4.3.5.	Peak Electricity Demand per m ²	194
4	4.3.6.	Annual Heating Demand per m ²	194
4	4.3.7.	Peak Heating Demand per m ²	195
4	4.3.8.	Annual Cooling Demand per m ²	195
4	4.3.9.	Peak Cooling Demand per m ²	196
4	4.3.10.	Yearly Thermal Discomfort	196
4	4.3.11.	Indoor Air Quality (CO2 Concentration)	197
4.4	I. KPI	S RELATED TO SMART GRID SERVICES1	98
4	4.4.1.	Delivered Flexibility	198

4.4.2	2. Flexibility Factor	
4.4.3	3. Flexibility Index	
4.4.4	1. Shifted Flexible Load	
4.4.5	5. Self-consumption rate	
4.4.6	5. Supply Cover Factor	
4.4.7	7. Grid delivered factor	
4.4.8	3. Additional energy consumed	
4.4.9	9. Peak delivered	
4.4.1	0. Peak exported	
4.4.1	1. Energy cost reduction due to flexibility delivery	
4.4.1	2. Peak demand reduction factor	
5. CO	DNCLUSION	205
5. CO	DNCLUSION	205 206
5. CO ANNEX ANNEX	DNCLUSION ES 1 Belgium Pilot KPIs	205 206 206
5. CO ANNEX ANNEX ANNEX	DNCLUSION ES 1 Belgium Pilot KPIs 2 Danish Pilot KPIs	205 206 206 208
5. CO ANNEX ANNEX ANNEX ANNEX	DNCLUSION ES 1 Belgium Pilot KPIs 2 Danish Pilot KPIs 3 Greek Pilot KPIs	205 206 206 208 210
5. CO ANNEX ANNEX ANNEX ANNEX ANNEX	DNCLUSION ES 1 Belgium Pilot KPIs 2 Danish Pilot KPIs 3 Greek Pilot KPIs 4 Hungarian Pilot KPIs.	205 206 206 208 210 212
5. CO ANNEX ANNEX ANNEX ANNEX ANNEX ANNEX	DNCLUSION ES 1 Belgium Pilot KPIs 2 Danish Pilot KPIs	205 206 206 208 210 212 212 214
5. CO ANNEX ANNEX ANNEX ANNEX ANNEX ANNEX	DNCLUSION ES 1 Belgium Pilot KPIs 2 Danish Pilot KPIs 3 Greek Pilot KPIs 4 Hungarian Pilot KPIs 5 Slovenian Pilot KPIs	

LIST OF FIGURES

Linung 1	CEDC VDL aard tamplata	-
Flaure	SEEDS KPI Card lemplale)
		-

LIST OF TABLES

Table 1 SEEDS Use Cases

Abbreviation table

Abbreviation	Full Form
API	Application Programming Interface
BE	Belgian
DK	Danish
GR	Greek
HU	Hungarian
ΙοΤ	Internet of things
KPI	Key Performance Indicator
MPC	Model Predictive Control
SL	Slovenian
UC	Use Case
WP	Work Package

1. INTRODUCTION

1.1. AIMS AND OBJECTIVES

The primary aim of Deliverable D3.2 – Holistic SEEDS Evaluation Framework is to develop a comprehensive evaluation framework that consolidates the outcomes from T3.3 – Use Case Scenarios and KPIs Definition for Automation Systems and integrates relevant contributions from all technical work packages (WP2–WP5). This deliverable ensures a structured and cohesive approach to assessing the progress, effectiveness, and impact of the technical innovations implemented within the SEEDS project. The main objectives of the task are to:

- Define use case scenarios using the IEC 62559 framework, providing structured descriptions of interactions between users and systems.
- Develop KPIs to evaluate progress and performance across all pilot sites, specifying their relevance and monitoring levels for each location.
- Consolidate methodologies and contributions from WP2 (Electrification), WP3 (Automation Systems), WP4 (Smart Building Services), and WP5 (Smart Grid Services) into a cohesive evaluation strategy.

1.2. RELATION TO OTHER ACTIVITIES IN THE PROJECT

Deliverable D3.2, "Holistic SEEDS Evaluation Framework," is closely linked to Task T3.2, "Technical Architecture and Specifications Definition," which establishes the technical specifications used in T3.3 to define the corresponding use cases and KPIs.

As a consolidated evaluation framework, D3.2 incorporates contributions from all technical WPs, establishing strong connections not only with WP3, "Enabling Automation and Smartness through Secure and Interoperable Middleware Data Platforms and IoT Devices," but also with other WPs. Specifically, use cases and KPIs from WP2, "Iterative Design of Component and Integrated Systems for Improved Energy Efficiency," WP4, "Integrated Building System Operation Optimization for Energy Efficiency," and WP5, "Deploying Energy Flexibility to Enhance Electricity Grid Stability," are integral to D3.2.

Furthermore, Task T3.3 is directly related to T2.6, "Smart Electrification Systems Performance Assessment," T4.3, "Deployment, Demonstration, and Evaluation of the Three MPC Approaches in the Three Pilots," and T5.6, "Evaluation of Flexibility Services." These tasks focus on assessing electrification systems, Model Predictive Control (MPC) performance, and energy flexibility services, respectively. T3.3 provides the evaluation criteria necessary to measure performance within these tasks.

Moreover, the KPIs developed in T3.3 not only support internal technical evaluation but also contribute to external communication efforts. In WP7, selected KPIs will be used in visual storytelling (T7.4) to demonstrate the performance, efficiency, and benefits of the SEEDS solutions, helping decision-makers assess and replicate thermal system electrification and energy optimization projects. In WP8, KPIs will probably be used to support dissemination activities, helping to highlight the value and impact of SEEDS innovations to external audiences.

Thus, D3.2 and the activities in T3.3 are key to both the technical evaluation and the broader impact and replication goals of the project.

1.3. **REPORT STRUCTURE**

This deliverable includes four main chapters, a conclusion chapter, and six annexes. Specifically, Chapter 1 introduces the deliverable, outlining its aims, objectives, and its relation to other activities within the SEEDS project. Chapter 2 explains the methodology used to define the use cases and KPIs. Chapters 3 and 4 describe the use cases for all pilot sites and the KPIs that will be used to assess the entire SEEDS project, respectively.

The conclusion chapter summarizes the key points, while the six annexes provide additional details. The first five annexes include information on which KPIs apply to each pilot site, their respective monitoring levels, and the data providers responsible for supplying the necessary data. The final annex contains the template used for the definition of the use cases.

2. METHODOLOGY

The evaluation of SEEDS requires a structured methodology to assess its effectiveness in achieving the goals of decarbonizing buildings and enhancing energy efficiency and flexibility. This assessment is crucial not only for measuring the project's impact but also for ensuring that the tailored solutions deployed in diverse real-world contexts are scalable, replicable, and aligned with SEEDS' overarching objectives.

The project focuses on three key pillars: cost efficiency, system integration, and replicability, which guide the development of Key Performance Indicators (KPIs) to track progress in these areas. The project's work spans four main categories: electrification systems, automation systems, smart building services, and smart grid services. KPIs are vital tools for monitoring the effectiveness of SEEDS' solutions, enabling stakeholders to measure advancements in energy efficiency, grid stability, and operational cost reduction.

Through T3.3, partners from all pilot sites, along with technical partners and WP/Task leaders, collaborated to define the KPIs and use cases. CERTH, as the task leader, proposed the template for use cases and KPIs, which were finalized through discussions with all partners involved in T3.3. RENEL, KUL, and DTU - Compute were responsible for the collection of use cases and definition of KPIs within WP2 ("Iterative Design of Components and Integrated Systems for Improved Energy Efficiency"), WP4 ("Integrated Building System Operation Optimization for Energy Efficiency and Flexibility"), and WP5 ("Deploying Energy Flexibility to Enhance Electricity Grid Stability"). CERTH, in turn, was responsible for the use cases and KPIs under WP3 ("Enabling Automation and Smartness Through Secure and Interoperable Middleware Data Platforms and IoT Devices"). Pilot leaders and technical providers filled in the use case templates and provided information on whether the KPIs are applicable to their pilot sites, the data sources, and the corresponding monitoring levels.

Meetings were organized to present the use case templates and methodology, and private meetings were held for specific pilots.

2.1. USE CASE METHODOLOGY

The SEEDS Use Cases were created using a well-established methodology commonly applied in other European projects focusing on Smart Grid solutions. This methodology is based on the IEC 62559¹ standard. The pre-existing standard templates for Use Case descriptions were adapted to meet the specific requirements of SEEDS. Below are the key definitions used in this methodology:

• Use Case: A detailed description of how users (actors) interact with a system to achieve a specific goal. It outlines the steps involved, the conditions under which the interaction occurs, and the expected outcomes.

¹ https://www.sis.se/api/document/preview/8013841/

- Actors:
 - **Primary Actors**: The main users who initiate and benefit from the use case (e.g., building managers, end-users).
 - **Secondary Actors**: Entities that support or are affected by the use case but are not the main initiators (e.g., maintenance personnel, energy providers).
- **System**: The technology or platform that facilitates the interactions described in the use case. This can include hardware, software, and integrated solutions that perform specific functions to achieve the use case's objectives.

The use case template includes the following information: a description of the use case, its scope and objectives, limitations, pilot sites involved, assets, technical details such as assets and actors, diagrams, use case scenarios, and the steps involved.

The template used for the use cases can be found in Annex 6 Use case Template.

The final use cases chosen by the pilots are listed in the table below.

Title of UC	Pilot Involved	Partners responsible
Capturing of telemetry data	Belgium	BWS
Model predictive control using calibrated models	Belgium	BWS, KUL
Iterative HVAC design to propagate the	Belgium	KUL, SWECO
electrification of thermal energy demand		
Improving thermal system designs by using	Belgium	BWS, KUL, SWECO,
integrated optimal design methodologies		
Capturing of telemetry data	Danish	CDK
Model predictive control using Grey-Box model for	Danish	DTU - Compute
the Danish Pilot		
Flexibility function integrated flexibility services	Danish	DTU - Compute
Electrification of thermal energy demand	Greek	CERTH, PTHERM
Minimization of Life Cycle Environmental Impact	Greek	RENEL, DUTH
through Circular Design Principles		
Capturing of telemetry data	Greek	CERTH
Active control of electrification systems	Greek	RENEL, CERTH
Predictive Maintenance of Heat Pump and PV	Greek	RENEL, CERTH
Systems		
Participation in Demand Response Schemes	Greek	CERTH
Setting up and testing the system to be deployed	Hungarian	Profigram, Fair C, ÉMI
Control system design and construction	Hungarian	Profigram, Fair C, ÉMI
Integration of Flexibility into MPC and Interaction	Hungarian	Profigram
with DSO		
Integration of Electric Vehicle Charger into the	Hungarian	Profigram
MPC Framework		
Capturing of telemetry data	Slovenian	PETROL
Providing flexibility services	Slovenian	JSI

Table 1 SEEDS Use Cases

2.2. KPIS COLLECTION

As mentioned in the introduction of chapter 2 (Methodology), KPIs for electrification systems, automation systems, smart building services, and smart grid services were defined by RENEL, CERTH, KUL, and DTU - Compute, respectively. Pilot leaders and technical providers then selected the KPIs relevant to their specific pilot sites.

Each KPI is identified by its KPI card, which includes essential information such as the KPI description, formulas, suggested data sources, units of measurement, and more. Figure 1 displays the generic SEEDS KPI card template.

PART A: KPI Profile						
KPI Name:		Type:	CORE		SUP	PORTING
Description:						
	PART B: KPI C	alculation				
Unit:		Baseline Esti Required:	imations	YES	6	NO
KPI Formula:						
Recommended						
Data Sources:						
Recommended		Recommende	he	time		
time interval of		interval for da	ata monito	orina.		
KPI reporting:				/ing.		

Figure 1 SEEDS KPI card template

3. USE CASES

3.1. USE CASES OF BELGIAN PILOT (BE)

3.1.1. UC – BE 1: Capturing of telemetry data

Description of the Use Case

Use case Identification				
ID Title Domain				
BE1	Capturing of telemetry data	Smart Buildings, Energy Management, Building Automation		

Version Management				
Version No	Date	Name of authors	Changes	
01	18.12.24	CERTH (Tsompanidou Eleni)	Initial draft outlining the main idea and scope of the Use case	
02	19.02.25	Builtwins (Filip Jorissen)	Complete Use Case Description (including objectives, steps)	
03	01.04.25	CERTH	Review for validation	
04	05.04.25	Builtwins	Final version	

Classification Information						
Pilot Involved	Belgium					
Relation to Other Use Cases	 UC - BE 2: Model predictive control using calibrated model UC - BE 3: Iterative HVAC design to propagate the electrification of thermal energy demand UC - BE 4: Improving thermal system designs by using integrated optimal design methodologies 					
Related Innovative SEEDS solutions	White-box MPC calibration method					
Assets of the UC	 Graphite Database (centralized storage). API (secure data retrieval). Grafana Visualization (real-time monitoring). 					

- Data Cleaning Algorithms (handling missing or erroneous
data).
 Secure Communication Protocols (HTTPS, token
authentication).

	Scope and Objectives of Use Case
Scope of the use case	 This use case focuses on capturing and managing telemetry data from various systems in the Belgian pilot, enabling seamless integration into a centralized data management platform. The process involves: Identifying and integrating telemetry data sources. Ensuring data quality and consistency. Providing secure and structured access for analytics and operational optimization
Objectives of the use case	 Identify and integrate telemetry data sources from IoT sensors, energy meters, HVAC systems, and BMS (Building Management Systems). Establish a secure and reliable data pipeline using standard protocols (BACnet, Modbus, M-bus). Implement data validation techniques to ensure data integrity for analytical applications. Enable stakeholder access via an API and visualization tools (Grafana). Maintain continuous data flow for uninterrupted operations and long-term storage.
Limitations & Assumptions	 Telemetry systems are assumed to be operational and accessible at all times. Integration with existing BMS protocols (BACnet, Modbus, M-bus) is assumed to be technically feasible. Data quality checks depend on the specific analytical use case. Network connectivity is assumed to be stable for real-time data transmission.

Narrative of Use Case								
Short Description	This use case describes the automated capture, storage, and utilization of telemetry data from multiple sources. The collected data is stored in a centralized Graphite database and made accessible for real-time analysis, optimization, and decision-making.							
Complete Description	Telemetry data from various building systems—such as room temperature sensors, energy meters, HVAC systems, and IoT devices—is collected, processed, and stored in a Graphite database. The collection occurs via BACnet,							

17

Modbus, and M-bus protocols, either through polling (reading values at
intervals) or subscription-based updates (triggered when a threshold is
exceeded).
Minimal processing ensures data integrity, with read errors stored as 'none'
values instead of being omitted. Data is transmitted securely over HTTPS and
stored at equidistant intervals: every minute for the first 100 days, then every
15 minutes for up to six years. Older data is aggregated using methods such as
averaging to optimize storage without compromising analytical value.
Data can be accessed via a token-secured API (providing JSON-formatted data
for automation) or through Grafana, which enables users to visualize, analyze,
and export data in CSV format. Functions like unit scaling, resampling, and
interpolation can be applied depending on the use case.
Processing methods vary based on application needs: real-time monitoring
may interpolate missing data, calibration models may ignore it, and Model
Predictive Control (MPC) can replace it with the last known value. This flexibility
ensures reliable data-driven decision-making for analytics, system calibration,
and optimization

Diagrams of the UC

Technical Details of the UC

Actors						
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case			
Data Collection Device	System	Collects telemetry data from sensors and devices.	Uses BACnet, Modbus, or M-bus protocols.			
Central Database	System	Stores raw and processed telemetry data.	Graphite database with secure HTTPS transmission.			
API Service	System	Provides secure access to stored telemetry data.	Uses HTTPS with token authentication.			
Visualization Platform	System	Enables users to view and analyze data.	Grafana for plots, functions, and CS downloads.			
Building Management System (BMS)	System	Manages building automation and sensor data.	Provides real-time telemetry data fo analytics.			
System Operator	Human	Monitors and analyzes telemetry data.	Uses Grafana for visualization and CSV export.			
Automated Control Algorithm	System	Uses telemetry data for optimization (e.g., MPC).	Processes data via API for real-tim adjustments.			

Step-by-step analysis of use case

Overview of scenarios

Scena	Scenario Conditions									
Νο	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition				
S01	Data Collection & Storage	Collection of telemetry data from sensors and storing it in the database.	Data Collection Device	New sensor reading is available.	Sensors are operational.	Data is stored in Graphite DB.				
S02	Data Access via API	External system retrieves data for analysis.	API Service	API request from external system.	Data is available in DB.	Data is provided in JSON format.				
S03	Data Visualization	Users view and analyze data using Grafana.	System Operator	User accesses Grafana interface.	Data is stored in DB.	Data visualization is displayed.				
S04	Automated Data Processing	System processes telemetry data for analysis or control.	Automated Control Algorithm	Data retrieval request is triggered.	Data available in DB and API.	Processed data is used for optimization.				

Steps per scenario

Scena	ario Name	Data Collection & Storage						
Step No.	Event	Name of Process/ Activity	Descripti on of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID
1	Sensor Reading	Data Collection	Sensor collects telemetry data.	BMS	Data Collection Device	BMS	Sensor Data ID	Data must be collected at least once per minute

2	Data Transmissi on	Secure Transmissio n	Data is sent to the central database	HTTPS	Data Collection Device	Central Database	Encrypted Data ID	Data must be transmitted using HTTPS protocol with encryption.
3	Data Storage	Data Logging	Data is stored at equidista nt intervals.	Graphite DB	Central Database	Database	Time- Series Data ID	Data must be stored in a time-series format, updated every minute initially and every 15 minutes after 100 days.

Scena	rio Name	Data Access via API						
Step No.	Event	Name of Process/ Activity	Descripti on of Process/ Activity	Service	Informatio n Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirement s, R-ID
1	API Request	Data Retrieval	External system sends an API request.	API	External System	API Service	Request Data ID	The system must provide an API endpoint that allows external systems to request data.
2	Data Processing	Query Execution	API processe s request and retrieves data.	API	API Service	Central Database	Query Response ID	The API must handle and execute data queries efficiently, ensuring correct retrieval from the database.

3	Data Delivery	Response Transmissio n	API sends data in JSON format.	API	API Service	External System	JSON Data ID	The API must respond with the requested data in JSON format with token-based authenticatio n.
---	------------------	------------------------------	--	-----	-------------	--------------------	-----------------	--

Scenario Name		Data Visualization								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements , R-ID		
1	User Login	Authentication	User logs into Grafana platform.	Grafana	System Operator	Visualization Platform	Login Credentials	The system must authenticate users securely before allowing access to the platform.		
2	Data Query	Fetch Data	Grafana queries the central database for data.	Grafana	Visualization Platform	Central Database	Query Data ID	Data retrieval from the database must support efficient query handling and filtering.		
3	Data Display	Visualization	Data is displayed as plots or CSV files.	Grafana	Visualization Platform	System Operator	Displayed Data ID	The platform must be capable of visualizing data in charts or exporting it as CSV files.		

Scenario Name		Automated Data Processing							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements , R-ID	
1	Data Reques t	Fetch Data	Algorithm requests telemetry data.	API	Automated Control Algorithm	API Service	Request Data ID	The algorithm must be able to request telemetry data from the API for real- time processing.	
2	Data Proces sing	Algorithm Execution	Data is processed based on application needs.	Algorith m	Automated Control Algorithm	System Operator	Processed Data ID	The system must execute algorithms that analyze data in real- time for optimization purposes.	
3	Data Output	Optimization Control	Processed data is used for optimizatio n control.	Algorith m	Automated Control Algorithm	BMS	Control Data ID	The system must ensure that processed data is sent to the BMS for control actions (e.g., HVAC adjustments).	

3.1.2. UC – BE 2: Model predictive control using calibrated models

Description of the Use Case

Use case Identification						
ID Title Domain						
BE2	Model predictive control using calibrated models	Building Automation and Energy Management				

Version Management							
Version No Date Name of author		Name of authors	Changes				
01	29.08.2024	Filip Jorissen (BWS)	First proposal of use case				
02	26.11.2024	Louis Hermans (KUL)	Additional Information Added				
03	19.02.2025	Filip Jorissen	General review and feedback				
04	02.04.2025	Tsompanidou Eleni (CERTH)	Review				
05	05.04.2025	Filip Jorissen	Final use case				

Classification Information					
Pilot Involved	Belgium				
Relation to Other Use Cases	UC – BE 1: Capturing of telemetry data				
Related Innovative SEEDS	Calibrated white-box MPC				
solutions					
Assets of the UC	Heat pumps, IoT sensors, Mathematical model of the building				

Scope and Objectives of Use Case

Scope of the	The scope of the use case relates to Model Predictive Control (MPC).
use case	Builtwins' MPC uses a detailed physics-based model to control the HVAC
	devices within a building. Due to its physics-based nature, the model is built
	using as-built file parameters such as dimensions, insulation thicknesses, etc.
	These parameters may however be inaccurate, outdated or unavailable, due
	to which the model is incorrect. Using a novel calibration methodology, the
	unknown parameters can be improved by reducing the error of the model
	when comparing with measurement data. Moreover, the existing MPC has
	only limited support for integer control variables, long-term optimal control, or

	seasonal switching decisions. To cope with this, the existing MPC-framework is generalized and extended.
Objectives of the use case	 Develop the calibration methodology Extend the MPC to improve support for integers, long-term optimal control and seasonal switching Apply the methodology to the Belgian pilot Verify the results: the error reduction on the observed parameters and whether the calibrated parameter values are realistic The improvement in control behavior and model mismatch
Limitations & Assumptions	The methodology requires sufficient sensors and qualitative measurement data. The MPC extensions are virtually tested.

	Narrative of Use Case
Short Description	The MPC model is calibrated using zone temperature measurements and other measurements related to the parameters that are intended to be calibrated. Additional algorithms are developed to extend the current MPC.
Complete Description	An MPC predicts specific variables such as zone temperature and other temperature values. Temperature measurements that correspond to these variables are often present in the real building. Ideally, the difference between those matching values is zero, meaning that the model perfectly predicts the building thermal comfort and energy use. In practice, this is, however not the case. These errors can be reduced somewhat by correcting the model initial temperatures but the effect of such corrections is limited. Correcting the model rather than correcting its initial temperatures is a more accurate way to align it with real-world building dynamics. This can be done by calibrating the model using the aforementioned measurements and variables. Firstly, the optimization objective is then reformulated such that it minimizes the model parameters instead of control variables. Such parameters can include the thermal conductivity of wall materials, the nominal thermal power of radiators, etc. This calibration methodology will be developed and tested. Furthermore, the MPC prediction can differ from the actual system because of simplifications in the MPC formulation. Two common simplifications in the existing white-box MPC are the neglection of long-term effects (in e.g. borefields) and considering integer control variables as continuous variables. To improve the control behavior, these effects can be considered directly in the MPC by introducing additional algorithms and/or models.

Diagrams of the UC

Technical Details of the UC

Actors							
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case				
Building Manager	Stakeholder	Responsibleforoverseeingtheoperationofbuilding	Uses calibrated models to determine optimal control actions while considering constraints and objectives.				
Database	Software/ System	Stores data	-				
Algorithm 1 (Calibration)	Software	Calibrates the physics-based model using historical and real-time data.	-				
Physics- Based Model	Software/ System	Simulates the building's thermal behavior based on inputs and parameters.	-				

Actors							
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case				
Algorithm 2 (MPC)	Software	Computes the optimal parameter values based on the calibrated model.	-				
Algorithm 3 (Integer, Long-term)	Software	Computes the optimal control actions	Extended for improved support for integers, long-term optimal control and seasonal switching				
IoT Sensors	System component	Devices that measure temperature, humidity, energy use, and other relevant variables in real-time.	Provide the essential data for both model calibration and MPC operation.				
IoT Gateway	System component	Device that aggregates data from sensors and meters and communicates it to the control system.	Ensures seamless data transfer and storage for model calibration and real-time control.				
Heat Pumps	System Components	Required infrastructure	-				

Step-by-step analysis of use case

Overview of scenarios

Scenario Conditions								
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition		
S01	MPC using calibrated model	Algorithm	N/A	Periodic clock	Measurement data and model predictions are available but have large differences.	The difference between predictions and measurements has decreased and new optimal results are computed.		

Steps per scenario

Scenario Name		MPC using calibrated model							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID	
1	Periodic clock	Calibration preparation	Calibration data are fetched from a database and processed and saved in the correct format.	Algorith ms	Database	Files	Calibration Data ID, Processed Data ID	R-01: Ensure database is accessible and data is in proper format	
2	Preparat ion finished	Calibration start	The calibration process uses processed measurem ents to find optimal parameters	Algorith m	File	File	Calibrated Parameters ID, Measureme nt Data ID	R-02: Algorithm must be capable of processing measurement data to find optimal parameters.	
3	Periodic clock	Execute MPC with optimal parameters	MPC is executed using the optimal parameters . Results are saved to file and database	Algorith m	File	File, database	Optimized Control Parameters ID, Simulation Results ID	R-03: The MPC should be capable of using the calibrated parameters and provide results.	

3.1.3. UC – BE 3: Iterative HVAC design to propagate the electrification of thermal energy demand

Description of the Use Case

Use case Identification							
ID	Title	Domain					
BE3	Iterative HVAC design to propagate the electrification of thermal energy demand	HVAC design replication strategy					

Version Management								
Version No	Date	Name of authors	Changes					
1	14.11.24	Ann Bruggeman (Sweco), Robin Haesen (Sweco)	Initial draft Use case definition					
2	15.11.24	Louis Hermans (KUL)	Additional Information Added					
3	19.11.24	Lieve Helsen (KUL)	Added some clarifications and a more explicit flow					
4	25.11.24	Arno Marechal (Sweco)	Additional Information Added					
5	28.11.24	Ann Bruggeman (SWECO)	Control strategy (design/ fase implemented), diagram adjusted					
6	01.04.25	Tsompanidou Eleni (CERTH)	Review for validation and final version					

Classification Information						
Pilot Involved	BE pilot (StijnS)					
Relation to Other Use Cases	Related to the Optimal Sizing Use Case					
Related Innovative SEEDS solutions	 Integrated optimal control and sizing (6) Adaptive hydronic scheme for seasonal switch (12) Replication from BE pilot 1 to pilot 2 (36) 					
Assets of the UC	Hydronic seasonal switching scheme					

Scope and Objectives of Use Case						
Scope of the use case	This use case aims to use an iterative design methodology to propagate the electrification of thermal energy demand					
Objectives of the use case	 Consider and assess feasible combinations of renewable (and residual) energy sources, tailored to the building location and program. Use standardized design blocks to couple the different renewable energy (sub)systems in order to obtain a hybrid supply for the heat (and cold) demand and an optimized energy efficiency, at the same time ensuring a logical and cost-effective exploitation scheme. Monitor the effectiveness of the built HVAC installation through continuous commissioning, feeding this information back to optimize new, future HVAC designs. Feedback loop from previously validated design decisions and the continuous commissioning into the iterative design process to create a database for similar projects. 					
Limitations & Assumptions	 Combining standardized design blocks often results in too many components (filters, valves,), a critical review and further optimization of the scheme as a whole is necessary. Assessing the sizing of the technologies based on intermittent renewable sources always entails a risk. Looking for the complementarity of technologies in hybrid energy systems also entails a risk, as redundant systems should be avoided. Sizing of the (sub)systems highly depends on the control strategy to be implemented. Feedback loop is necessary to enable new similar designs to benefit from previous research and to ensure dissemination of all lessons learned. 					

Narrative of Use Case

The iterative design of hybrid HVAC solutions eventually will facilitate the						
optimal design of hybrid systems, with an optimized configuration of different						
subsystems, based on the renewable energy source potential, to ensure high						
annual performance. The necessary components that link the different						
subsystems ensure the functioning of different scenarios, depending on the						
aforementioned system efficiency that may vary over seasons. Once their						
effectiveness is shown in several projects (including continuous						
commissioning), the propagation of the design methodology can be quantified and will increase the electrification of thermal energy demand.						

Complete Description	Depending on the location, renewable (and residual) energy sources are identified, together with an estimation of their potential. A first spatial planning that indicates roughly the needed space for the technical equipment is drawn (available and usable roof area, available and accessible terrain for borefields,
	volume of buffer tanks,). Once the renewable (and residual) energy sources
	using standardized design blocks.
	The hydronic scheme is assessed, using different scenarios that allow the
	subsystems, depending on the seasonal performance of each subsystem and
	the thermal energy need of the building. The optimized combination of different
	sum of OPEX and CAPEX, including a selected control strategy.
	From a first feedback loop, the design choices and their corresponding
	Once the HVAC installation is built, the performance is checked through
	continuous commissioning, feeding this information back in a second feedback loop to optimize new, future HVAC designs.

Diagrams of the UC

Technical Details of the UC

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
Building site	Building site	-Location limits the potential of R2ES -Building program and occupational needs define thermal energy demand	Input for the process
Building owner	Stakeholder, Formal decision taker	-Defines the building program - Approves the design and execution file, puts the execution file in the market	 Input for the process Tendering of the chosen solution: launch, assess (in close collaboration with the engineering firm) and award the contractor who will implement the design
Architect	Stakeholder	Provides the building plans	Input for the process
HVAC designer	Stakeholder	 Designs the thermal system Verifies the different scenarios (including control strategy) and system efficiency Finalizes hydronic switch scheme Feeds back the design choices to a database 	 Input for the process, that outputs the HVAC design Assist awarding of the tender, implemenation of the real-life solution reference data (input/ set points) for the continuous commissioning
Modeler	System	Models the buildings and thermal system and simulates the system under different scenarios, using the selected control strategy.	Input for the process

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
Designer of the control strategy	Designer of the control strategy	Designs the made-to- measure control strategy	Defines the desired KPI's for the thermal system (control setpoints of the HVAC system)
HVAC contractor	Contractor	Implements the HVACequipmentonsiteaccordingtotheexecutiondocuments	Implements the HVAC equipment in real-life conditions to enable the real time switching of the HVAC hybrid scheme
Building Facility manager	Stakeholder	Daily management of the energy system	A good understanding of the overall building energy system is necessary to safeguard longevity of the installation
Seasonal Commissioner	Seasonal Commissioner	 Evaluates the real life performance of the thermal system design Feeds back the lessons learned of the continuous commissioning to a database 	Both input for future designs as output to evaluate the assessed HVAC installations

Step-by-step analysis of use case

Overview of scenarios

Scenario Conditions									
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition			
S01	Assess feasible renewable (and residual) energy sources	The HVAC designer assesses different options linked to the building site	HVAC designer	Renovation or decarbonisation of the thermal energy supply is necessary	Investment budgets/ financial boundaries are agreed upon	Feasibility study of R2ES			

Scenar	Scenario Conditions								
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition			
S02	Define the hybrid solution: combination and complementarity check of subsystems and different scenarios	The HVAC designer decides on a hydraulic configuration and sends it to the modeler	HVAC designer	The HVAC designer has finalized the hydraulic schemes	Hydraulic configuration is agreed upon	sent			
S03a	Iterative design: optimal control strategy	Designer of the control strategy develops the optimal control strategy based on the building and HVAC design	Control designer	The HVAC designer has finalized the hydraulic schemes, building plans are finished	Building plans, hydraulic configuration are ready and agreed upon	Control strategy, ID of monitored components and reference set points defined			
S03b	Iterative design: optimal sizing of the components	The modeler develops the dynamic system model and simulates the system using the selected control strategy.	Modeler	Modeler receives hydraulic configuration, scenarios, control strategy and building plans	Building plans, hydraulic configuration and control strategy are ready	dynamic system model is ready and simulated.			
FBA	Feedback loop 1	Feedback from the design process to the database	Modeler	The HVAC design is finished	The HVAC design is finished	Database is updated with feedback from design			
S04a	Tendering process to implement HVAC	introduce HVAC design for implementation in the market and award tender	Building owner	Final design is incorporated in execution file	HVAC designer has checked all execution files	Contractor is appointed to implement HVAC equipment			

Scenar	Scenario Conditions								
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition			
S04b	HVAC-scheme execution	Install and implement HVAC solution on site	Building owner	Tender is awarded	Contractorisassignedandexecutionisordered	Installation of HVAC equipment on site			
S05	Continuous Commissioning	Seasonal commissioning of the installation	Seasonal Commissioner	The installation is installed and running for a certain period	The installation is installed and running for a certain period	The operation of the installation has been reviewed			
FBB	Feedback loop 2	Feedback from the seasonal commissioning and the execution phase to the database.	Seasonal Commissioner	The results from the seasonal commissioning are available	A phase of seasonal commissioning is finished	Database is updated with feedback from seasonal commissioning			

Steps per scenario

Scen	cenario Name: Assess feasible renewable (and residual) energy sources								
Step	Event	Name of	Description of	Service	Information	Information	Information	Requirements,	
No.		Process/	Process/ Activity		Producer	Receiver	exchanged	R-ID	
		Activity			(Actor)	(Actor)	(IDs)		
1	program analysis	program analysis	Definition of site- bound key figures: based on the building program and building address, define the need for power (electrical, heating, cooling, ventilation)	send	EPB, integrated performance systems designer	HVAC designer	Estimation of power needed, based on the building program	Estimation tools used during sketch design (estimate power needed for ventilation heating, cooling, electrical	
								volumes (incl plugloads); asses R ² ES potential	

								based on site
2	Building	Buildina	Definition of site-	send	Building	FPB HVAC	Definition of	address Characteristics
	envelop analysis	envelop analysis	bound key figures: based on the building envelope (existing or new construction). In case of an existing building: analysis of the available As- Built information.	Senu	physicist	designer	the preferred characteristi cs of the building envelope and potential energy systems. Estimation of the (current or desired) airtightness.	of building materials (U- values, LCA), energy systems requirements (concepts)
3	Site visit	Visual verificatio n of As- Built informati on and spatial feasibility of chosen solutions	Confirmation of the building envelop characteristics on site to confirm the assumptions based on the As-Built info; confirm the spatial feasibility of chosen solutions	Send	Building physicist, integrated performance systems designer	HVAC designer	Confirm	Confirmation of the assumed characteristi cs, of spatial possibilities on site, of the building materials (U- values, LCA), of the potential energy systems requirements (concepts)
4	Heath loss calculation / simulation	Heath loss calculatio n/ simulatio n	Definition of site- bound key figures: power demand based on the specific site and	Send	EPB, integrated performance systems designer,	HVAC designer	Estimation of power needed, based on the building volume and	Estimation tools used during sketch design (heat loss calculation,

	program (existing or	HVAC	characterist	building
	new construction).	designer	ic,	simulation,
			orientation	other)
			on site,	
			thermal	
			validation of	
			the building	
			envelope,	
			estimation	
			of the	
			(current or	
			desired)	
			airtightness	
			included	

Scen scen	Scenario Name: Define the hybrid solution: combination and complementarity check of subsystems and different scenarios								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID	
1	Define the hybrid solution		HVAC designer is provided with guidelines to design suitable hybrid solutions	send	HVAC designer	modeler	Scope and basic potential configurations (scenario's) of hybrid solutions for a specific site	HVAC design simulation	

Scenario Name: Iterative design: optimal control strategy								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID
1	Define the control strategy	Definition of the control strategy	HVAC designer is provided with guidelines on how to control the hybrid energy systems	send	Control strategy designer	HVAC designer	Scope and basic configuration of the control strategy for potential scenario's for a specific site	control design for (centralized and decentralized) energy systems
2	Define the required instrumentation to implement	Definition of I/O	HVAC designer prescribes the optimal hardware &	defined	HVAC designer	HVAC designer, control strategy designer	Definition of the hardware and communication characteristics	Final execution design, Tender docs

the control	sensors	to facilitate the
strategy	needed to	control of the
	implement	system for
	the control	potential
	strategy	scenario's for a
		specific site

Scena	cenario Name: Iterative design: optimal sizing of the components							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID
1	Define the	optimal	Modeler is provided	send	Modeler	HVAC	Optimal	Simulations,
	optimal	sizing of	with			designer	sizing of	analysis of
	sizing of	component	precise characteristi				componen	the different
	compone	s	cs of the hybrid				ts for	scenarios
	nts		energy systems and				potential	through
			the control strategy				scenario's	simulations
			and defines through				for a	
			simulation the				specific	
			optimal sizing of				site	
			components					

Scenario Name:	Feedback loop 1							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R- ID
1	Optimal	Feed key	Engineering	Database	HVAC	HVAC	Optimal	Project reference
	hybrid	prestation	company	had been	designer	designer,	hybrid	database:
	energy	figures	collects	updated		Seasonal	energy	assumptions
	systems	related to	and saves			Commissioner	system and	made on the
	and control	the hybrid	key figures				control	building envelop
	strategy	systems to	into a				strategy for	and the technical
	are defined	а	dedicated				a specific	installations
	and ready	dedicated	project				site	prescribed
	for	project	reference					
	tendering	reference	database					
		database						

Scen	cenario Name: Tendering and installation of HVAC equipment							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID
1	Optimal	Tendering	Engineering	Tendering	Building	contractors	Supply	Financial and
	hybrid	process	company checks	process	owner with		necessary	technical
	energy	to	technical		the support		information to	approval of the
	systems	determine	characteristics of		of an		enable the	tender
	and control	a suitable	the offer, building		engineering		introduction of	documents by
	strategies	contracto	owner checks		company		viable offers	the site owner,
	are defined	r	formal				regarding the	as well as the
	and ready		preconditions to				execution of	engineering
	for		assign the best				the HVAC	company
	tendering		execution partner				scheme	
2	Award tender	Award	Financial and	Tendering	Building	contractor	Tender	Demonstrate
		tender	technical	award	owner with		awarded yes/	suitability to
			approval of the	process	the support		no	execute the
			offers introduced,		of an			HVAC design
			both by the site		engineering			
			owner as well as		company			
			the engineering					
			company, to					
			assign the most					
			suitable					
			contractor					
3	Execute	Execution	Follow-up of the	Execution	Contractor,	Building	As built info	Financial and
	tender	of HVAC	implementation	coordinati	Supervised	owner with		technical
	documents	equipment	of the design on	on	by an	the support		approval of the
			site		engineering	of an		execution by
					company	engineering		the site owner,
						company		as well as the
								engineering
								company

Scen	Scenario Name: Continuous Commissioning							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements , R-ID
1	Optimal hybrid energy systems and control strategy are implement ed and operational	Measure and monitor the hybrid energy system and control strategy onsite	Engineering company and/ or building owner collects and monitors key performanc e indexes linked to the hybrid energy systems	Commiss ioning plan is delivered and being executed	Seasonal Commissio ner	Seasonal Commissioner, building owner	Commissionin g data for a specific site	Monitoring reports, ideally fed into the project reference database

Scer	cenario Name: Feedback loop 2								
Step	Event	Name of	Description	Service	Information	Information	Information	Requirements,	
No.		Process/ Activity	of Process/ Activity		Producer (Actor)	Receiver (Actor)	exchanged (IDs)	R-ID	
1	Installed	Feed key	Engineering	The	Seasonal	HVAC	Real-life	Project	
	hybrid energy	monitoring	company	database	Commissioner	designer,	data on	reference	
	systems and	figures to a	collects	had been		building	hybrid	database	
	control	dedicated	and saves	updated		owner,	energy		
	strategy are	project	key			maintenance	systems		
	being	reference	monitoring			company	and		
	monitored on	database,	figures into				control		
	site,	based on real-	a dedicated				strategy		
	measurements	life	project				for a		
	are available	measurements	reference				specific		
			database				site		

3.1.4.UC – BE 4: Improving thermal system designs by using integrated optimal design methodologies

Use case Identification						
ID	Title	Domain				
BE4	Improving thermal system designs by using integrated optimal design methodologies	HVAC design optimization				

Version Management								
Version No	Date	Name of authors	Changes					
01	29.08.24	Louis Hermans (KUL), Ann Bruggeman (Sweco), Filip Jorissen (BWS)	First draft					
02	01.04.25	Tsompanidou Eleni (CERTH)	Review for validation					
02	06.04.25	Lieve Helsen (KUL)	Asset added					

Classification Information					
Pilot Involved	BE pilot (StijnS)				
Relation to Other Use Cases	Related to the MPC UC as MPC is used in this use case. Related to the iterative HVAC design use case.				
Related Innovative SEEDS solutions	 Integrated optimal control and sizing (6) Extension of white-box MPC to multi energy vector district systems (22) 				
Assets of the UC	Algorithm to optimally size thermal system components thereby using optimal control, as such reducing both CAPEX and OPEX				

Scope and Objectives of Use Case				
Scope of the use case	This use case aims to use an integrated optimal design and control methodology to optimally size thermal systems.			
Objectives of the use case	 Consider the flexibility exploitation potential of optimal control during the design of the thermal system Minimize the CAPEX and OPEX of the system simultaneously Guarantee thermal comfort of the eventual users of the system 			
Limitations & Assumptions	 Detailed building models are required during the design phase Assumptions on future boundary conditions have to be made and are uncertain. Assumptions on user behavior have to be made and are highly uncertain. Due to these uncertainties the sizes obtained are the lower limits and need to be subjected to stress tests. 			

	Narrative of Use Case
Short Description	In this use case, the sizes of components in the thermal system (HPs, borefield, tanks,) are optimized by taking into account the eventual operational optimal control policies. The flexibility exploitation of optimal control is considered during the design phase and can prevent unnecessary oversizing of expensive components. This makes that CAPEX and OPEX are minimized together.
Complete Description	Building plans together with a corresponding hydraulic scheme of the thermal system are made. Once these are finished, a detailed controller model of the entire system is developed. This MPC model is then used in the inner loop of a nested optimization to determine the optimal control schemes by MPC for a certain combination of component sizes. This allows to find the combination of component sizes that minimizes the sum of OPEX and CAPEX. Oversizing is avoided by exploiting the flexibility present in the system. This is automatically done by the MPC in the inner loop of the nested optimization. Assumptions on future boundary conditions (weather, prices,) are made. For prices different scenarios are considered and for weather conditions both TMY and EMY files are used, the latter to perform some stress testing.

Technical Details of the UC

Actors	Actors				
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case		
HVAC designer	Stakeholder	Designs the thermal system	Input for the process, that outputs proper (cost-effective) sizing of thermal systems		
Architect	Stakeholder	Provides the building plans	Input for the process		
Modeler	System	Models the buildings and thermal system	Input for the process		
Optimizer	Algorithm	The algorithm optimizes 2 nested loops	Generation of output: optimal sizes		

Step-by-step analysis of use case

Scen	Scenario Conditions						
Νο	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition	
S01	Building plans are sent	The architect makes the building plans and sends them to the modeler.	Architect	Building plans are ready	Building design is agreed upon	sent	
S02	Hydraulic configuration is sent	The HVAC designer decides on a hydraulic configuration and sends it to the modeler	HVAC designer	The HVAC designer has finalized the hydraulic schemes	Hydraulic configuration is agreed upon	sent	
S03	Development of MPC model	The modeler develops the MPC model	Modeler	Modeler receives hydraulic configuration and building plans	Building plans and hydraulic configuration are ready	MPC model is ready	
S04	Integrated control and size optimization	The optimization algorithm runs.	Optimizer	The MPC model is ready and the boundary conditions are chosen	MPC model ready and boundary conditions chosen	Components are optimally sized	

Scena	rio Name	Building pla	ns are sent					
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirem ents, R-ID
1	Building plans are ready	Sending of building plans	The architect sends the buildings plans to the modeler	send	Architect	Modeler	Building plans	

Scena	rio Name	Hydraulic configuration is sent						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirem ents, R-ID
1	Building plans are ready	Sending of building plans	The architect sends the buildings plans to the modeler	send	Architect	Modeler	Building plans	

Scena	rio Name	Development of MPC model						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informa tion Produce r (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Require ments, R-ID
1	Modeler receives hydraulic configurat ion and building plans	Developm ent of MPC model	The modeler develops the white-box MPC model using existing tools.	development	Modeler	Modeler	MPC model	
2	MPC model is ready	Sending MPC model to optimizati on algorithm	The modeler sends the finished MPC model to the optimizer to be used for the integerated control and size optimization	send	Modeler	Optimizer	MPC model	

Scenario Name		Integrated control and size optimization						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Require ments, R-ID
1	Optimizer receives the MPC model	Receiving of MPC model	The optimizer receives the MPC model from the modeler	send	Modeler	Optimizer	MPC model	
2	Optimizer receives the boundary conditions	Receiving boundary condition s	The boundary conditions are given to the optimizer	send	Extern	Optimizer	Boundary condtions	
3	Optimizer Receives boundary conditions and MPC model	Performi ng optimizat ion	The optimizer performs the integrated control and sizing optimization	optimizin g	Optimizer	Output	Optimal component sizes	

3.2. USE CASES OF DANISH PILOT (DK)

3.2.1. UC – DK 1: Capturing of telemetry data

Use case Identification			
ID	Title	Domain	
DK1	Capturing of telemetry data	Data management	

Version Management				
Version No	Date	Name of authors	Changes	
01	21.11.24	Marie-Louise Krogh (CDK)	Proposal of use case	

	Classification Information				
Pilot Involved	Danish Pilot, Tech House building, led by Center Denmark, supported by DTU - Compute, Dandy Business Park, Enfor and Al-Nergy				
Relation to Other Use Cases	 UC – DK 2: Model predictive control using Grey-Box model for the Danish Pilot UC – DK 3: Flexibility function integrated flexibility service Related to Use cases for Danish pilot building "Tech House" 				
Related Innovative SEEDS solutions	 Digital platform connecting BMS and real-time electricity prices Data quality assurance mechanism Upgrade of existing platforms for near real time data acquisition and control 				
Assets of the UC	Tech House is an office building under construction and will be ready for use by medio 2025. Automations systems, IoT and solar panels are planned and the planning of an establishment of battery power storage is ongoing right now. The building is much like an existing building and therefore many of the systems planned for use are already known to the pilot site owner.				

	Scope and Objectives of Use Case
Scope of the	The scope of this use case focuses on facilitating a digital platform for data collection from the Danish pilot building "Tech House", where data flows from the buildings different automation systems to the platform. Enhancing data sets of relevance to partners.
use case	Through a process of collecting knowledge of possible automations systems, required supplementary data from e.g. weather, building BBR system, new IoT requirements from the building and battery power storage. Identifying the needs for cleaning and optimizing the data sets to a degree possible and relevant for the partners using the data. Making the data accessible to named partners and facilitate implementation of a constant flow of data as part of an optimal system operation
Objectives of	 Identify relevant datasets for the data platform relevant to partners for
the use case	digital twin modelling Establish data flow using the best suitable technology Optimization of data Create and maintain user rights and access of data through portal Secure data platform and data availability throughout the project
Limitations & Assumptions	The Danish Pilot is still in the construction phase, we rely on the existing knowledge on automations systems used in similar buildings belonging to same building owner.

	Narrative of Use Case
Short Description	The Digital platform collects data on relevant automation systems for pilot site building "Tech House" and facilitates optimal and secure data delivery to project partners.
Complete Description	Center Denmark facilitates the collection, integration, and delivery of data from the automation systems of the Tech House pilot site. Leveraging data from multiple sources, including local data systems (consumption gateways, solar inverters, battery management systems, etc.), and weather data, the data pipeline is structured across four layers within a data warehouse: Landing, Bronze, Silver, and Gold. In the Landing layer, raw data, such as energy consumption, thermal energy usage, and actuator positions, is ingested directly from APIs and sensors. This raw information includes both exteroceptive measurements (consumption metrics) and proprioceptive measurements (e.g., battery charge levels, EV charger statuses). The Bronze layer processes this raw data, standardizing formats, handling errors, and filtering irrelevant data to create a structured and reliable dataset. The Silver layer performs transformations, enriching datasets with contextual metadata and applying business logic. Finally, in the Gold layer, data is refined optimized for specific applications, such as indoor air quality monitoring, energy optimization, and predictive maintenance. These datasets are delivered securely via the Center Denmark portal, enabling researchers to analyze building management systems and optimize energy use. Through Center Denmark's portal the data can be accessed via API or simply downloaded in batches via the web browser. The data is visible and accessible to our partners when they have registered to the portal, and access has been granted.

Technical Details of the UC

Actors	Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case	
Automation systems	Software	Data collection from the building systems	N/A	
Battery Storage	Software	Data from the storage	N/A	
Center Denmark Database	System	Stores data.	N/A	
Dandy Business Park	Pilot site owner	Stakeholder management and integration to systems delivering data	N/A	

Step-by-step analysis of use case

Scenar	Scenario Conditions					
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre- condition	Post-Condition
S01	Identification of data sources	Collaboration between site owner and development partners identifying relevant data sources	CDK	Physical meeting	Which data sources are relevant and needed	Identified relevant data sources and possible integration technologies
S02	Integration to data sources	Set up integration to the relevant sources from site building	CDK	Meetings with relevant data suppliers	Legal agreements in place	Data flow is established and tested
S03	Data quality	Data check to make sure quality and quantity fits needs	CDK, DTU, Enfor, Al- nergy	Data accessible on CDK landing platform	Scenario 02	The data is of right quality and quantity and relevant corrections are made
S04	Data accessible for relevant partners	The data is processed in the required manor and made available through portal where the relevant users have access	CDK	Data has been transformed, enriched and refined to the need of the partners	Data flow from pilot site and user/partner access defined	The partners have access to the data through the portal throughout the project

Scenario Name S01 -		S01 – Iden	- Identification of data sources					
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requireme nts, R-ID
S01	Meeting	Identify automati on data points	Site owner and CDK meet to identify available data points from CTS (e.g. indoor climate, ventilation, energy use)		Dandy Business Park	CDK	List of available data points	-
S02	Setup	Data export from CTS system	Configure export of selected CTS data to external sFTP server		Dandy Business Park	CDK	Selected relevant tags	-

Scena	cenario Name S02 – Integration to data sources							
Step No.	Event N P A	lame of De Process/ Ad Activity	escription of Process/ ctivity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Requirem ents, R-ID
S01	Setup	Data export from CTS system	Configure export of selected CTS data to external sFTP server		Dandy Business Park	CDK	Export configuratio n	Secure transfer
S02	Ingestio Setup NiFi n flow for ingestion		Establish NiFi flow to extract data from sFTP and load into the Landing zone of the datalakehouse		CDK	CDK	NiFi flow config	Data mapping
S03	Test	Integratio n test	Verify successful ingestion and completeness of data		CDK	CDK	Test log results	Validation protocol

Scena	rio Name	S03 – Data quality						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requiremen ts, R-ID
S01	Cleanin g	Clean raw data in Bronze layer	Apply standardization, error handling, and removal of irrelevant data		CDK	CDK	Cleaned dataset log	Data quality threshold
S02	Enrich ment	Enrich in Silver layer	Add metadata and apply context-aware transformation using business logic		CDK	CDK	Enriched data schema	Metadata consistency
S03	Validati on	Partner verificati on	Partners review quality of available data through test access		CDK	DTU, Enfor, Al-nergy	Validation report	Partner feedback loop

Scena	enario Name S04 – Data accessible for relevant			ant partne	rs			
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informat ion Produce r (Actor)	Informat ion Receive r (Actor)	Information exchanged (IDs)	Requirem ents, R-ID
S01	Authori zation	Setup user access managem ent	Define access rights based on partner roles	Portal	CDK	Partner Organiz ations	Access matrix	Role- based access
S02	Deploy ment	Provide data via Gold layer	Make refined data accessible through API and portal interface	Portal	CDK	DTU, Enfor, Al-nergy	Data access endpoint	Availabilit y SLA
S03	Mainte nance	Monitor access and performan ce	Track usage and performance metrics to ensure continuity		CDK	CDK	Usage stats	Monitorin g plan

3.2.2.UC – DK 2: Model predictive control using Grey-Box model for the Danish Pilot

Use case Identification				
ID	Title	Domain		
DK2	Model predictive control using Grey-Box model for the Danish Pilot	Energy efficiency and flexibility activation		

Version Management				
Version No	Date	Name of authors	Changes	
01	30.10.2024	Shahab Tohidi (DTU - Compute)	Definition of the Use Case	
02	02.04.2025	Eleni Tsompanidou (CERTH)	Review	
03	05.04.2025	Shahab Tohidi (DTU - Compute)	Additional info added	

Classification Information					
Pilot Involved	Danish Pilot				
Relation to Other	 UC – DK 1: Capturing of telemetry data 				
Use Cases					
Related	 Novel heating/cooling system using low-temperature district 				
Innovative SEEDS	heating & high temperature cooling (3)				
solutions	 Platforms for near real time data acquisition and control 				
Assets of the UC	Tech House				

	Scope and Objectives of Use Case
Scope of the	The scope of this use case focuses on enhancing energy efficiency and
use case	flexibility in building energy systems through the application of model
	predictive control (MPC) supported by grey-box modeling. This approach
	requires identification of a low dimensional representations of building energy
	systems that balance accuracy with computational efficiency using statistical
	analysis. Utilizing the grey-box model enables the controller to predict changes
	in energy demand, react to external factors like weather conditions and
	occupancy patterns, and dynamically adjust heating, ventilation, air

	conditioning (HVAC), and other building systems. Furthermore, the approach integrates flexibility activation, allowing the building to respond to grid demands and price signals, potentially lowering operational costs and contributing to grid stability.
Objectives of	 Data collection from white-box representation of the Danish Pilot Develop model selection and parameter identification for grey-box
the use case	modelling Model predictive controller design using grey-box model Apply the control methodology to the Danish pilot (white-box) Verify the results
Limitations	Since the Danish Pilot is still in the construction phase, we have to rely on white-
&	box model data instead of real building data. We are working on in parallel to
Assumptions	include real-time data from a similar existing building.

	Narrative of Use Case
Short Description	Model predictive control design for energy efficiency and flexibility activation
Complete Description	Using data generated from a white-box model and statistical analysis we find a low-dimensional model that represents the data properly. This grey-box model is then utilized to predict the states of the system for the model predictive controller. The controller is designed such that it takes care of the technical constraints and improves energy efficiency and flexibility activation.

Technical Details of the UC

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
Database	System	Stores data.	
Algorithm 1	Software	System identification, including model selection and parameter identification	-
Algorithm 2	Software	Computes the optimal control command.	-
White-box model	Software	Detailed simulation model of the building	-
Grey-box model	Software	Low-dimensional model of the building	It receives measurements from the building and forecasts from forecasting services—
Building	System	-	-

Step-by-step analysis of use case

Scen	Scenario Conditions							
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition		
S01	White-box model	White-box model	Using detailed information about the building and HVAC system, a white-box model is developed	-	Detailed information about the building and HVAC system should be accessible	The generated data should be collected in a data base in a proper format		
S02	System identification	Algorithm 1	Using statistical analysis and machine learning methods, a low dimensional model is selected, and its parameters are identified	-	Rich data set is needed so that the parameters can be identified accurately	The identified model (grey-box) can then be used in MPC.		

S03	Grey-box model	Grey-box model	Providing prediction about the future states of the system	-	Measurement of the current states or their estimation needs to be provided	-
S04	Optimization	Algorithm 2	Optimal control command is found by solving the optimization algorithm while considering technical constraints	-	Costfunctionandtheconstraintsshouldbedeterminedbasedontheobjectives	Tuningofthecontrollerisrequiredtoimprovetheperformance
S05	Building (White- box model)	System	The controllable devices in the building are controlled by the control command		-	The system is evaluated in terms of energy use, comfort, and the state values

Scenari	o Name	S01 – White-box model						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID
St01	Request	Request for data	White-box model generates data in an appropriate format	Generate datasets with the requested resolution and	White-box model	Database	Information about energy consumption and thermal dynamics	Ξ
				period				

Scenaı Name	io	S02 – System identification						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID
St02	Request	Request	System	Limit on the	System	Grey-box	Information	-
		for optimal	identification	complexity of	identification	model	about model	
		parameter	generates optimal	the model			structure and	
		estimation	model structure	can be			model	
			and parameters	requested			parameters	

Scena Name	rio	S03 – Grey-box model						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirements , R-ID
St01	Reque st	Measuremen t and estimation	Measurements from building and estimation values are collected	Data should be provided in an specific sample time	Building	Grey-box model	Building energy consumptio n and thermal data	-
St02	Reque st	Prediction	Grey-box model uses the current measurements as well as the forecasts to predict future states of the building	-	Grey-box model	Optimizatio n	Depending on the optimization cost function, Grey-box model provides the required data	-

Scenari	o Name	S04 – Optir	nization					
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirement s, R-ID
St01	Request	Receive prediction	Predictions provided by the Grey-box model are received	_	Grey-box model	Optimization	Time series of prediction of building energy consumption and thermal states	_
St02	Request	Optimal control command generation	Optimization problem is solved considering technical and comfort constraints	-	Optimization	Building	Control command depends on the system to be controlled	_

Scena	rio Name	s05 – Building							
Step	Event	Name of	Description of	Service	Information	Information	Information	Requirements,	
No.		Process/	Process/ Activity		Producer	Receiver	exchanged	R-ID	
		Activity			(Actor)	(Actor)	(IDs)		
St01	Request	Measurement	Provides	Data should	Building	Grey-box	Building		
		data	measurements of	be provided		model	energy		
			building thermal	in a specific			consumption		
			states and	sample			and thermal		
			consumption	time			data		

3.2.3. UC – DK 3: Flexibility function integrated flexibility services

Use case Identification		
ID	Title	Domain
DK3	Flexibility function integrated flexibility services	Energy Efficiency, DER

Version Management							
Version No	Date	Name of authors	Changes				
01	14.11.24	Shahab Tohidi (DTU - Compute)	Definition of the Use case				
02	01.04.25	Eleni Tsompanidou (CERTH)	Review				
03	05.04.25	Shahab Tohidi	Final				

C	Classification Information					
Pilot Involved	Danish pilot					
Relation to Other Use Cases	 UC – DK 2: Model predictive control using Grey-Box model for the Danish Pilot 					
Related Innovative SEEDS solutions	 Flexibility characterization using flexibility function, Optimal penalty signal generation for low-level controllers Ancillary services via the employment of flexibility function in optimization Optimal PV and battery operation for DSO grid support 					
Assets of the UC	Chiller, district heating substation setpoint, PV					

	Scope and Objectives of Use Case
Scope of the use case	The scope of this use case includes analysis, optimization and real-time management of flexibility services, as well as energy efficiency.
Objectives of	1. Deploy energy flexibility of buildings
the use case	 Enhance the stability of the electricity grid in connection with DSOs by providing ancillary services. Develop methods for calculating DSO flexibility needs Develop the minimum components for enabling flexibility services using the flexibility function. Provide energy efficiency. Optimal planning of PV and battery
Limitations & Assumptions	Regulatory conditions, Technological boundaries (lack of heat pump and storage tank, and batteries)

	Narrative of Use Case
Short Description	In response to a flexibility request by a DSO, an analysis of the energy flexibility potential of the available assets is made by a flexibility management system via the flexibility function. An optimization problem is then solved, which results in an optimal penalty signal generation. The penalty signal is then transferred to an incentive-responsive control to change the setpoints of the HVAC system.
Complete Description	Once a request is received from DSO, the flexibility management system uses digital twins to predict the demand over the specified period. One of the key tools in this process is the flexibility function, which is used to predict price- responsive demand. Furthermore, the flexibility management system generates an optimal incentive/price signal for the controller. The control system then utilizes this signal, along with real-time measurements and forecasts, to generate optimal commands to the building. Additionally, prosumers contribute to demand shaping and demand-side management by adjusting their consumption patterns in response to these price signals.

Technical Details of the UC

Actors	Actors								
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case						
Prosumer	Stakeholder	The end user that consumes and produces electricity	Consider as uncontrollable actor whose decisions affects the demand and flexibility potential						
DSO	Stakeholder	Distribution System Operator	In case of the Danish pilot, ai energy will have the role of forecasting system						
Flexibility management system	System	The system that predicts the aggregated demand and manages the prosumer's flexibility by generating optimal penalty signal	In case of the Danish pilot, CDK can have the role of flexibility management system						

Actors	Actors								
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case						
Control system (energy management system)	System	Incentive-based control and optimization algorithms	_						
Forecasting systems	System	The Core System of the SEEDS FSS	In case of the Danish pilot, Enfor will have the role of providing the forecasts						
Building(s)	(Sub-)System	One or more buildings that have price- responsive energy management	_						

Step-by-step analysis of use case

Scen	ario Conditions					
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post- Condition
S01	Request Flexibility	DSO sends a day ahead demand request to the flexibility management system	DSO, flexibility management system	DSO needs flexibility in their distribution system within the next day	DSO and prosumer are connected with the flexibility management system; DSO and prosumer have an active contract for flexibility services	None
S02	Flexibility Request Evaluation	Flexibility management system checks the requests and triggers their evaluation	Flexibility management system	Fixed time deadline (e.g., each day at 8h in the morning)	Scenario S01 completed within a predefined time window (typically within this day).	None
S03	Offer Flexibility	Based on the evaluation results from S02, flexibility management	Flexibility management system	Fixed time deadline (e.g., each day at 11h in the morning)	Finished evaluation triggered in Scenario S02	None

Scen	ario Conditions					
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post- Condition
		system decides to make an offer or not				
S04	View and Accept or Reject Flexibility Offer	DSO checks the offer and decides to accept it or not	DSO	Fixed time deadline (e.g., each day at 12h)	Posted Flexibility management system's offer from Scenario S03	None
S05	Optimal Penalty Signal Generation	If DSO accepts the offer, it generates the optimal penalty signal for the control system	Flexibility management system	Fixed time trigger as specified in the offer (and in line with DSO's request)	Accepted the flexibility management system's offer by DSO	None
S06	Deliver Flexibility	The incentive based controller finds a control signal based on the provided penalty signal	Control system, Prosumers, Buildings	Each control iteration (e.g. every fifteen minutes)	The optimal penalty signal is generated in Scenario S05.	None
S07	View Flexibility Delivery Evaluation	Complete evaluation of the delivered flexibility is performed by DSO.	DSO, Prosumer	Flexibility delivery from scenario S06 is completed	Flexibility delivery from scenario S06 is completed	None

Scenario Name		S01 – "Request Flexibility"								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requir ement s, R-ID		
St01	Request	Request for flexibility	DSO posts request for flexibility to the flexibility manageme nt system	-	DSO	Flexibility manageme nt system	Flexibility request specification (time window, flexibility amount), Time	-		

			profile of the	
			desired demand	

Scenario Name S02 – "Flexibility Request Evaluation"								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Require ments, R-ID
St01	Request	View request for flexibility	Flexibility manageme nt system views DSO's request for flexibility	_	DSO	Flexibility manageme nt system	Flexibility request specification (time window, flexibility amount), Time profile of the desired demand	_
St02	Request	Request evaluatio n	Flexibility manageme nt system requests DSO for flexibility evaluation	_	Flexibility manageme nt system	DSO	Trigger flexibility request evaluation (Boolean)	_
St03	Respons e	Receive evaluatio n	Flexibility manageme nt system receives evaluation of DSO's request for flexibility	_	DSO	Flexibility manageme nt system	Flexibility request evaluation (Parameters specifying one or more options for a flexibility offer e.g complete device schedules for each offer)	_

Scena	enario Name S03 – "Offer Flexibility"							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Requir ement s, R-ID
St01	Request	Offer flexibility	Flexibility management system decides to offer (or not) one of the evaluated flexibility options	_	Flexibility manageme nt system	DSO	Decision on flexibility offer (Confirmation for one or zero flexibility offer options)	-

Scena	rio Name S04 – "View and Accept or Reject Flexibility Offer"							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Requir ement s, R-ID
St01	Request	View flexibility offer	DSO views the flexibility offer	-	Flexibility management system	DSO	Flexibility offer specification (price,)	-
St02	Request	Accept or not the flexibility offer	DSO decides to accept (or not) the flexibility offer	-	DSO	Flexibility manageme nt system	Decision on flexibility offer acceptance (Boolean)	-

Scena	rio Name	S05 - "Opt	S05 – "Optimal Penalty Signal Generation"						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requir ement s, R-ID	
St01	Request	Deliver penalty signal	Flexibility management system generates the optimal penalty signal using flexibility function	_	Flexibility management system	Control system	Optimal penalty signal (Time profile of penalty values)	_	

Scenario Name S06 – "Deliver Flexibility"								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requir ement s, R-ID
St01	Request	Deliver flexibility	Control system sends the control command to the buildings	_	Control system	Prosumer, Buildings	Control signal	-

Scenario Name		S07 – "View Flexibility Delivery Evaluation"								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requir ement s, R-ID		
St01	Request	View flexibility delivery evaluation	DSO views flexibility delivery evaluation	_	Flexibility manageme nt system	DSO	Parameters of evaluation of the delivered flexibility (time profile)	_		

3.3. USE CASES OF GREEK PILOT (GR)

3.3.1. UC – GR 1: Electrification of thermal energy demand

Use case Identification						
ID	Title	Domain				
GR1	Electrification of thermal energy demand	RES				

Version Management								
Version No	Date	Name of authors	Changes					
0.1	20.06.24	Tsompanidou Eleni (CERTH)	Initial draft outlining the main idea and scope.					
02	10.12.24	Iakovos Michailidis (CERTH), Apostolos Gkountas (PTHERM)	Full details, including objectives and steps					
03	01.04.24	CERTH	Revisions of the use case					

Classification Information					
Pilot Involved	Greek Pilot, led by DUTh, CERTH, PTHERM				
Relation to Other Use Cases	 UC – GR 3: Capturing of telemetry data 				
Related Innovative SEEDS solutions	 HP Parameterization Recommendation System (Task 2.4) 				
Assets of the UC	Heat Pump, PV				

	Scope and Objectives of Use Case
Scope of the use case	The scope of this use case is to develop and demonstrate innovative and integrated solutions focused on the optimal electrification of the thermal energy demand of buildings in terms of energy efficiency, reliability and cost-effectiveness.
Objectives of the use case	 Create and implement efficient electrification solutions tailored to pilot site needs. Optimize the heat pump system from a design parameters perspective. This enables the evaluation of different configurations

	and the identification of the most efficient parameter settings, ultimately enhancing system performance under the most demanding demand-setpoint and climate conditions that can be realistically met.
Limitations &	Sensors and automation systems are fully operational for optimal
Assumptions	 Heat pump system is installed and available for parameterization.

	Narrative of Use Case
Short Description	This UC focuses on optimizing the electrification of thermal energy demand in buildings using an advanced, multi-source heat pump system. An HP Parameterization Recommendation System will be developed that will find the optimal design parameters of the heat pump (Task 2.4)
Complete Description	Based on the dedicated model developed by PTHERM for the Greek pilot case, the heat pump system will be optimized from a design parameters perspective, using the coefficient of performance (COP) and tank volume as key indicators. The optimization will focus on system dimensioning under varying demand- setpoint and climate conditions to identify the most efficient configuration and enhance overall system performance.

Technical Details of the UC

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
System Designer (CERTH)	Designer	Conduct a detailed dynamic simulation analysis of the building in order to determine the heating and cooling loads. Simulation is conducted with the use of the INTEMA.building tool	Defining the heating and cooling requirements of the pilot building
HP Parameterizatio n Recommendati on System	System/ Organizati on	A system that is able to automatically decide the best parameterization of the system, anticipate system behaviour and make any final adjustments to further optimize its performance.	Electrification Solutions Parameterization
DUTh residents and employees	End-User	The students at DUTH will engage in a participatory process to co-develop a thermal management program tailored to their needs. They will provide feedback on thermal comfort preferences, participate in energy awareness initiatives, and	Technology towards electrification

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
		interact with the building's automation system to optimize its operation based on real-life conditions.	
MSHP Manufactorer (PSYCTOTHER M)	System	Design and develop a heat pump system utilizing R717 (ammonia) as the working fluid to deliver both heating and cooling. This innovative heat pump will feature a multi-source configuration, optimizing energy efficiency by selecting the most suitable energy source—ambient air, solar, geothermal, or hybrid— based on operating conditions. The system will provide a heating capacity of 117 kW and a cooling capacity of 106 kW, ensuring high performance across diverse applications.	Design support tool towards sustainable building electrification solution (heating/cooling)
Sensor System	System	Detects extreme temperature conditions in the environment and sends real-time data.	
Control Algorithm	System	Receives sensor data, selects the most efficient energy source, and sends commands.	
Heat Pump	Device	Adjusts its operation based on the control algorithm's input to maintain temperature.	

Step-by-step analysis of use case

Scena	cenario Conditions							
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition		
S01	Optimized MSHP Tank Parameteri zation	Automating the parameterization and performance optimization of the heat pump.	Operator s of the HP, such as students or heating services	The internal temperature of the student building deviates from the set comfort range (e.g., too cold in winter or too hot in summer).	Heat pump simulation model available for system configuration and evaluation of the different trade-offs under various demand and climate conditions.	Decision that leads to the best design configuration/bes t parameterization of the system, further leading to the most efficient operation for the heat pump.		
S02	Extreme Case (Maintainin g heating or cooling in a residential student building during extreme weather conditions)	During extreme weather, when energy demand is at its peak and some energy sources may be less effective, the multi-source heat pump dynamically adjusts its operation. It prioritizes the most efficient combination of available sources— such as geothermal storage, ambient air, and solar—to maintain comfortable indoor temperatures and prevent system overload.		Outdoor temperatures reach extreme highs or lows, causing a significant deviation from the building's set comfort temperature range.	-At least one energy source remains operational despite extreme conditions. The operational mode with ambient air will be able to provide heating even when the ambient air is about -10 °C. -The heat pump's sensors are fully operational to monitor performance and environmental conditions.	The building's temperature is stabilized within the comfort range, ensuring the well-being of students. The control algorithm will be able to operate only with ambient air, if the water cannot operate in very low temperatures.		

Scenario Name		Optimized	MSHP Tank P	arameteriz	ation			
Step No.	Event	Name of Process/ Activity	Descriptio n of Process/ Activity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Requir ement s, R-ID
1	MSHP manufactur er needs to dimension the MSHP for a given building	MSHP manufact urer needs to dimensio n the MSHP for a given	Request building- specific informatio n and data	Optimiz ation of the MSHP tank volume	Pilot building owner (DUTH)	PSYCTO (MSHP manufactu rer)	Building location, building thermal demand, MSHP operational period/purposes selection (heating only, cooling only, both)	-
2		building	Initiate the model, adapt it to the specific buildings demand and weather conditions and run the optimizati on algorithm		PSYCTO (MSHP manufactu rer)	Pilot building owner (DUTH)	Sizing of the MSHP tank, seasonal COP and manufacturing costs	

Scenario Name		Extreme Case Maintaining heating in a residential student building during extreme weather conditions						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Informati on Receiver (Actor)	Information exchanged (IDs)	Requirements , R-ID
1	Outdo or low tempe rature s	Heating operating only with one heat source	The heating mode will be covered totally by only ambient air as heat source. Therefore the control algorithm cannot select among the heat sources for the most efficient operation, but selects the only one available.	Heating	Sensoring system monitors and informs the user (eg DUTH heating services)	DUTH heating/t echnical services	Solar and geothermal waters are out of operation.	The heat pump will operate with a lower COP due to unfavorable outdoor conditions and the unavailability of other heat sources. However, the monitoring system will remain fully operational, recording the performance and all energy indicators, ensuring this data is accessible to all stakeholders.

3.3.2.UC – GR 2: Minimization of Life Cycle Environmental Impact through Circular Design Principles

Description of the Use Case

Use case Identification							
ID Title Domain							
GR2	Minimization of Life Cycle Environmental Impact through Circular Design Principles	Sustainability, Circular Economy, Environmental Impact Management					

Version Management							
Version No	Date	Name of authors	Changes				
01	11.12.24	Nikolaos Rapkos (RENEL)	Complete Use Case Description				
02	02.02.24	Pantelis Botsaris (DUTh)	Use case Review				
03	12.03.25	Evangelia Rigati (RENEL)	Additional Information Added				
03	01.04.25	Eleni Tsompanidou (CERTH)	Revisions of the use case				

Classification Information					
Pilot Involved Greek Pilot, led by DUTh, Certh, Renel					
Relation to Other Use Cases	N/A				
Related Innovative SEEDS solutions	N/A				
Assets of the UC	PV system and Heat pump powered by the geothermal and solar thermal field				

Scope and Objectives of Use Case

Scope of the	This use case focuses on the development and life-cycle management of a					
use case	ground-based bifacial photovoltaic system combined with an innovative					
	reflection tracking system, used to optimize solar capture and supply clean					
	electricity to a heat pump. The project integrates circular design principles to					
	minimize the environmental footprint at all life cycle stages-from material					
	sourcing to decommissioning.					

Objectives of the use case	 Apply circular design principles to all components of the PV-reflection system and its interface with the heat pump. Select recyclable and low-impact materials for the panel frame, reflective system and support infrastructure, such as aluminium. Measure and reduce the environmental impacts using life cycle assessment (LCA) tools.
Limitations & Assumptions	 The reflection system and the PV support structure should allow easy disassembly Data for the LCA are gathered from the pilot installation at DUTh campus Recycling capacity is relevant to aluminum, plastic film, and electronic components Reuse potential is available for support structures and mechanical actuators

	Narrative of Use Case
Short Description	This use case focuses on how the implementation of a photovoltaic-reflection energy system can be optimized to minimize life cycle environmental impacts. Circular design is embedded at each phase: sourcing, production, operation, and end-of-life.
Complete Description	The PV-reflection system consists of bifacial solar modules mounted on the ground combined with a reflection system that will be placed behind them. The reflection system maximizes rear-side irradiance and energy yield. The generated electricity will feed a multi-source heat pump to cover part of its needs, reducing fossil fuel dependency. The design process favor recyclable materials, modularity for part replacement and minimal embedded emissions. LCA tools will be employed throughout the project to inform design adjustments and ensure circularity. The end-users will be properly trained towards sustainable end-of-life management.

Diagrams of the UC

Technical Details of the UC

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
DUTh residents and employees	End-User	Individuals that use the system.	-
DUTh technical department team	Maintenance	Individuals that maintain the system.	-
External suppliers and installers	nalInstallationTechnical experts responsible foriersandwork, Supplythe procurement and installationlersphases of the systems' componentsand the supply of components.		
Recycling and Service Org Remanufacturin Provider of-li g		Organizations that handle the end- of-life collection, recycling, and remanufacturing.	Essential for returning materials to the supply chain for reuse.
Municipality	Authority	Municipality's alignment with regulations that set goals for sustainability.	Ensures compliance with circular economy and sustainability regulations.
LCA software tool	Digital Tool	It will be utilised to assess the environmental impact of the PV- reflection system across all life cycle stages, guiding design improvements and end-of-life planning	
RENEL	Coordinator	Oversees design, life-cycle analysis, and sustainability strategy for the system.	

Step-by-step analysis of use case

Overview of scenarios

Scenario Conditions

Νο	Scenario title	Scenario description	Primary actor	Triggering event	Pre- condition	Post-Condition
S01	Consumer Use and Maintenance	Regular inspections and maintenance actions ensure high performance. Modular components are replaced when needed to extend system lifetime.	DUTh's Technical Department team	Product usage and scheduled check or performance anomaly detected	System is operational with accessible and replaceable component s	System is used for a longer duration and with reduced environmental impact
S02	End-of-Life Collection and Recycling	End-of-life products are collected for recycling or remanufacturing into new products, reducing waste.	Recycling & Remanufact uring service provider	Product reaches end of life	Product has been designed for disassembl y and recycling	The system components are successfully recycled or remanufactured and environmental impact is minimized

Steps per scenario

Scena	rio Name	Consumer Use and Maintenance						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Requiremen ts, R-ID
St1	Scheduled maintenan ce	Routine Inspectio n	Inspection of the PV- reflector system by DUTH's technical department to detect performance drops, wear, or damage.	Mainte nance	DUTH's Technical Department	DUTH's Technical Departmen t	Product usage data and inspection log	System manuals and maintenanc e instructions.
St2	Detected issue	Replace ment of the faulty compone nt	Replace damaged or degraded components to restore full system functionality.	Repair service	DUTH's Technical Department, External suppliers and installers	DUTH's Technical Departmen t, Recycling and Remanufac turing	Repair report	System manuals and maintenanc e instructions. Availability of repair services and spare parts

Scena	ario Name	End-of-Life Collection and Recycling						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Informatio n exchanged (IDs)	Requirem ents, R-ID
St1	End-of-life products are collected for recycling or remanufactu ring	Disassemb ly and Material Sorting	Dismantle system and sort components for reuse, recycling, or safe disposal.	End-of- Life Service	RENEL, Recycling Provider	DUTH, local recycling company	Disassemb Iy Plan	Collection infrastruct ure.
St2	Collected products are recycled or repurposed into new products or materials- Final review	LCA Impact Assessme nt	Perform LCA to evaluate environmental benefits and savings achieved through circular design.	Sustain ability Report	RENEL	DUTH, resident, all relevant stakehold ers	LCA report	LCA software tool

3.3.3. UC - GR 3: Capturing of telemetry data

Description of the Use Case

Use case Identification					
ID	Title	Domain			
GR3	Capturing of telemetry data	Data Management, Visualization			

Version Management							
Version No	Date	Name of authors	Changes				
01	20.06.24	Tsompanidou Eleni (CERTH)	Draft definition of the use case				
02	03.12.24	Achilleas Andronikos (CERTH)	Filling the contents of the use case for the Greek Pilot case				
03	05.12.24	PantelisBotsaris (DUTh)	Review of the use case				
04	07.12.24	Achilleas Andronikos (CERTH)	Revisions of the use case				
05	03.04.24	CERTH	Revisions of the use case				

Classification Information					
Pilot Involved	Greek Pilot, led by DUTh				
Relation to Other Use Cases	 GR-UC1: Electrification of thermal energy demand GR-UC4: Active control of electrification systems GR-UC5: Predictive Maintenance of Heat Pump and PV Systems GR-UC6: Participation in Demand Response Schemes 				
Related Innovative SEEDS solutions	 FIWARE-based interoperable facility management platform Protocol inclusive gateway agents Data quality assurance mechanism Visual analytics engine for users enhanced situation awareness 				

	Multi-source HP, bi-facial PV, PLC, EV chargers, sensors
Assets of the UC	on dorm rooms (20 out of 68 rooms) and central
	measuring sensors located in the building's basement.

	Scope and Objectives of Use Case
Scope of the use case	The scope of this use case involves ensuring that data management and pre- processing mechanisms for a smart IoT platform in facility management adhere to FAIR principles. This includes developing tools for representing heterogeneous data from internal sensors in smart appliances, existing building systems, open API web sources (such as weather and electricity prices), and automation devices connected to electrification systems.
Objectives of the use case	 Integration of sensory data collected from 20 (out of 68) student dorm rooms. Interoperable smart facility management platform. Automated IoT ecosystem with seamless operation and maintenance services. Secure and reliable monitoring, trend analysis and assessment tools that provide insights towards more optimizations
Limitations & Assumptions	 The system assumes proper sensor installation and remote monitoring and control access of the equipment planned to be installed within the SEEDS project for the Greek pilot site. Data integrity is ensured via the PLC and IoT platform Real-time updates may depend on network stability Integration of the IoT platform assumes compliance with all regulations (eg. GDPR)

	Narrative of Use Case
Short Description	A middleware platform is developed that permits the seamless data transfer between the smart IoT devices. It focuses on handling various open APIs and protocols, using standardized semantic models for electrification systems and devices to enable effective reasoning and context awareness, and incorporating data quality and curation mechanisms to ensure reliable AI services. This approach allows for the effective application and integration of data-driven building optimization and control schemes, accommodating varying levels of observability.
Complete Description	This use case supports end-to-end telemetry data collection from room-level and building-level sensors, energy infrastructure and other data sources. A

Narrative of Use Case

central gateway (PLC) into a dedicated server (DUTH) is utilized for collecting and aggregating information from multiple dormitory rooms. The gateway serves as primary interface between sensors and the CERTH IoT platform. The platform provides real-time data collection and monitoring of different data sources under a unified approach. Features of the IoT platform includes:

- FIWARE-based interoperable facility management platform
- Protocol inclusive gateway agents
- Data quality assurance mechanism
- Visual analytics engine for users enhanced situation awareness

Diagrams of the UC

Technical Details of the UC

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
Sensors	Device	Collect telemetry data (e.g temperature, CO2) from the dorm rooms	Installed in each room (20 rooms out of 68)
Central PLC	System	Aggregates data from sensors and transmits it to DUTH server.	Must support IoT connectivity protocols (eg. MQTT)
DUTH's Server	System	Data from all the SEEDS equipment of the pilot (building rooms, building basement, energy assets) are transmitted into the DUTH server, which then forwards all the generated data to the CERTH IoT platform.	N/A
Energy Assets	Device	Includes all the available energy assets of the Greek pilot site (multi- source HP, bi-facial PVs, EV chargers)	N/A
loT platform (and Visual Analytics Engine)	Application	ReceivesandvisualizesdataprovidedbyDUTH'sserver.Providesanalyticsdashboards	Integration APIs provided by CERTH
Building Manager/Operator	User	Monitors building data and acts on alerts/reports.	N/A

Step-by-step analysis of use case

Overview of scenarios

Scenario Conditions						
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre- condition	Post-Condition
S01	Visualization of telemetry data	Actor (building manager) interacts with the visualization software (IoT platform)	loT platform	Request access to facility monitoring dashboards.	IoT platform having remote access to all sensory data and energy assets monitoring capabilities.	Dashboards and analytics provided to building managers.
S02	Historic data retrieval for AI tools (developed under WP4 and WP5)	Automated service-to- service data exchange between the loT platform and other Al tools (developed under other WPs)	loT platform	Request real-time or historic data from an integrated asset.	IoT platform having remote access to all sensory data and energy assets monitoring capabilities.	Return the requested data in a time series format

Steps per scenario

Scena	rio Name:	Visualization of telemetry data						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informa tion Produc er (Actor)	Informa tion Receive r (Actor)	Information exchanged (IDs)	Requireme nts, R-ID
St1	Scheduled measurem ent interval	Data Collection	Sensors in each dorm room/basemen t collects data (eg. Temperature, humidity)	Measure ment	Sensor	Central PLC	Raw sensor data	R-01: The Sensors are installed and are operational, R-02: Regular data collection intervals have been set
St2	Completion of data collection	Data aggregation	DUTh's server aggregates the data received from the sensors and performs basic validation checks.	Data Processi ng	Central PLC	DUTh's server	Aggregated data	R-03: The DUTh's server must support IoT communic ation protocols
3	Completion of data collection from the energy asset of the pilot (e.g. PV system, HP system)	Data aggregation	DUTh's server aggregates the data received from the energy assets and performs basic validation checks.	Data Processi ng	Energy Assets	DUTh's server	Aggregated data	R-04: The energy assets must provide remote monitoring capabilities

Scena	rio Name:	Visualization	of telemetry data					
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informa tion Produc er (Actor)	Informa tion Receive r (Actor)	Information exchanged (IDs)	Requireme nts, R-ID
St3	Monitor of the energy assets	Data Collection	The loT platform receives data in a regular basis from all the other available energy assets or sensor of the pilot (eg. PV system, HP system, room sensors) via communication with the DUTh server and integrates them with data coming from other data sources.	Data Processi ng	DUTh's server	loT platfor m	Aggregated data	R-05: Validation of incoming data
St4	Visualizatio n of data	Visualizatio n	CERTH IoT Platform visualizes aggregated real-time and historic data on dashboards and generates analytics insights.	Data Visualiz ation and analytics	loT platfor m	Buildin g manag ers	Data visualizations	R-06: Dashboard s accessible to building managers

Scenario Name:		Historic d	ata retrieval					
Step No.	Event	Name of Process / Activity	Description of Process/ Activity	Service	Informati on Producer (Actor)	Informati on Receiver (Actor)	Information exchanged (IDs)	Requirements, R-ID
1	Request of data from the loT platform	Data Request	A service/tool wants to consume data from the IoT platform	Data access	Al-driven tools	loT platform	Request to IoT platform	R-07: All external services must use authenticated requests, R-08: All services must integrate with the IoT platform APIs
2	Processi ng the request	Data aggregat ion	The IoT platform aggregates historic available data within the platform with real-time data based on the request query.	Data Proces sing	loT platform	IoT platform	Aggregated data	R-08: The IoT platform should provide advanced querying capabilities
3	Execution of the data request	Data Collectio n	The external tool/service receives the data from the IoT platform	Data Proces sing	loT platform	Al-driven tools	Aggregated data	R-04: The energy assets must provide remote monitoring capabilities, R- 05: Validation of incoming data

3.3.4. UC – GR 4: Active control of electrification systems

Description of the Use Case

Use case Identification		
ID	Title	Domain
GR4	Active control of electrification systems	Integrated Energy Systems

Version Management				
Version No	Date	Name of authors	Changes	
01	14.11.24	RENEL	Use Case Description	
02	18.12.24	Pantelis Botsaris (DUTH)	Review	
03	15.02.25	George Karatzinis, Kyriaki Fanaridou (CERTH)	Additional Information Added	
04	01.04.25	Tsompanidou Eleni (CERTH)	Revisions of the use case	

Classification Information				
Pilot Involved	Greek Pilot, led by PTHERM, DUTh, Certh, Renel			
Relation to Other Use Cases	 UC – GR 3: Capturing of telemetry data 			
Related Innovative SEEDS solutions	 Smart Modulation Control for Multi-Source HPs (T4.1.1 - Greek Pilot) Smart Tracking Control for Reflector Systems (T4.1.2 - Greek Pilot) Smart Thermal Comfort and Energy Consumption Manager (T4.2 - Greek Pilot) 			
Assets of the UC	PV system, heat pump, solar thermal, Geothermal system			

Scope and Objectives of Use Case							
Scope of the	This use case focuses on intelligent control mechanisms for heat pump						
use case	modulation, thermostat optimization and PV reflector optimizations, in order to enhance system performance and reliability.						

Objectives of the use case	 Ensure the system optimally mixes heat sources to maintain user comfort, improve heat pump performance, and ensure environmental efficiency. Maximize energy yield and efficiency through smart tracking tool for PV reflector system, considering sun position and externalities. Control framework for thermostat setpoint adjustment that ensures thermal comfort for building occupants while minimizing energy consumption. Enhance performance through real-time control, and adaptive management for MSHP, PV reflector system, FCU.
Limitations & Assumptions	 Real-time energy data is available for decision-making. IoT-enabled sensors and smart control systems are available.

	Narrative of Use Case							
Short Description	The use case addresses the intelligent control of Heat Pump modulation, PV reflector tracking systems, and thermostats to enhance operational efficiency, user comfort, and energy savings.							
Complete Description	The use case involves the deployment of advanced control mechanisms to optimize the performance of thermal and photovoltaic (PV) systems. More specifically, it includes dynamic modulation of multi-source heat pump to optimize energy use and ensure thermal comfort. Smart tracking tools for PV reflectors maximize solar energy yield by dynamically adjusting their positioning. Thermostat setpoint adjustments are managed in real-time to balance energy consumption and indoor comfort. will allow operators to monitor fluctuations in supply and demand efficiently. Advanced control frameworks facilitate load shifting, maximize renewable energy utilization, and ensure seamless coordination between energy generation and consumption. The policies will also aim to meet environmental goals by prioritizing the use of renewable energy sources and enhancing stability through flexibility mechanisms.							

88

Diagrams of the UC

Technical Details of the UC

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
DUTh residents and employees	End-User	Consumers who use the system (e.g., through PV).	Mainly residential consumers.
IoT Sensors	Device	Monitor temperature, occupancy, HVAC performance, solar radiation	Provide real-time data
Smart Modulation Control Tool	System	Dynamically controls heat pump operation	Optimizes energy efficiency and thermal comfort
Smart Tracking Tool	System	Adjusts the positioning of bifacial PV reflectors	Enhances the efficiency of PV systems
Thermal Comfort Managing Tool	System	Adjusts thermostat setpoints	Adjusts thermostat setpoints
Building Manager	End-User	Oversees system operation and approves control decisions when needed.	Oversees thermostat adjustments
Energy Management System (EMS)	System	Control system that allows the centralized management of a building's systems.	

Step-by-step analysis of use case

Overview of scenarios

Scena	Scenario Conditions									
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post- Condition				
S01	Multi- Source Heat Pump Modulatio n	Modulation of heat pump operation to optimize energy efficiency, comfort, and source selection.	Smart Modulatio n Control Tool	-	Real-time data from energy sources and heat pump and remote control setting	Heat pump operates with optimal source mix.				
S02	PV Reflector Adjustmen t	Dynamic adjustment of bifacial PV reflector positioning to maximize energy yield.	Smart Tracking Tool	Solar irradiation change detected	Availability of data, access and monitoring of data and actions remotely and remote control of PV reflector adjustment	PV energy produced is maximized				
S03	Thermosta t Setpoint Adjustmen t for Comfort and Energy Efficiency	Real-time adjustment of thermostat setpoints in individual rooms to maintain thermal comfort and minimize energy usage.	Thermal Comfort Managing Tool	A deviation from desired indoor temperatu re or occupancy changes in one or more rooms.	Availability of real-time indoor temperature and occupancy data for the building.	Thermal comfort restored/s ustained and energy consumpti on optimized by adjusting thermostat setpoints.				

Steps per scenario

Scenario Name		Multi-Source Heat Pump Modulation							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Informa tion Receive r (Actor)	Informati on exchang ed (IDs)	Requirements, R-ID	
St1	Heat Demand Detecte d	Heating Activation	The modulation tool detects heating demand and activates the heat pump.	Heatin g control	Temperat ure/occup ancy sensors	Smart Modula tion Control Tool	Heat demand signal (INF 4.1)	Real-time sensor /controller integration.	
St2	Source Optimiz ation	The tool evaluates the availability, cost, and environment al impact of heat sources.	The system adjusts energy flows by controlling demand response or adjusting generation schedules	Energy Manag ement	Source monitorin g system	Smart Modula tion Control Tool	Source data (INF 4.2)	Monitoring system for energy sources.	
St3	Modulati on Adjustm ent	Source- Based Modulation	The tool adjusts heat pump operation to optimize energy efficiency and comfort.	Heatin g/Cooli ng Control	Smart Modulatio n Control Tool	Heat Pump	Modulati on instructi ons (INF 4.3)	Heat pump compatible with modulation inputs.	
St4	Feedbac k Loop	Performance Monitoring	The system collects performance data to refine modulation strategies.	Monito ring	Smart Modulatio n Control Tool	Energy Manag ement System	Perform ance data (INF 4.4)	Data collection infrastructure.,	

Scena	rio Name	PV Reflector Adjustment						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Servic e	Informatio n Producer (Actor)	Informa tion Receive r (Actor)	Informati on exchang ed (IDs)	Requirements, R-ID
St1	Change in irradiation	Irradiation Monitoring	The tracking tool detects changes in solar irradiation levels.	Solar Tracki ng	Solar sensors	Smart Trackin g Tool	Irradiatio n data (INF 5.1)	Solar sensor integration.

St2	Reflector adjustmen t	Position/an gle Optimizatio n	The tool adjusts PV reflector positioning to maximize solar energy capture.	PV Optimi zation	Smart Tracking Tool	PV Reflect ors	Position adjustme nt signal (INF 5.2)	Reflectors compatible with tool inputs.
St3	Energy Yield Monitorin g	Performanc e Feedback	The system monitors PV energy yield to refine reflector control strategies.	Monit oring	Smart Tracking Tool	Energy Manag ement System	Yield data (INF 5.3)	Real-time PV yield monitoring.

Scenario Name	Thermostat Setpoint Adjustment for Comfort and Energy Efficiency							
Step No.	Event	Name of Process / Activity	Descriptio n of Process/ Activity	Service	Information Producer (Actor)	Informatio n Receiver (Actor)	Informatio n exchange d (IDs)	Require ments, R-ID
St1	Temperature Deviation Detected	Conditio n Monitori ng	System detects a deviation from the desired room temperatu re or comfort bounds.	Monitorin g Service	Temperatur e/occupanc y indoor sensors	Thermal Comfort Managing Tool	Indoor temperatu re data (INF 6.1)	Real- time sensor integrati on.
St2	Setpoint Adjusted Evaluated	Control Policy Evaluati on	System evaluates the optimal thermosta t setpoint adjustmen ts based on comfort and energy efficiency.	Control Optimizati on	Thermal Comfort Managing Tool	Building Manager	Adjusted thermosta t recomme ndations (INF 6.2)	Black- box MPC framew ork active.
St3	Adjustments Implemented	Thermo stat Setpoint Adjustm ent	Thermost at settings are updated in the affected room(s) to	Heating/C ooling Control	Thermal Comfort Managing Tool	Thermosta t	Adjusted setpoint values (INF 6.3)	Thermo stats responsi ve to control inputs.

			restore comfort.					
St4	Feedback Loop	Impact Monitori ng	System collects data on energy consumpti on and restored comfort levels for further optimizati on.	Monitorin g and Feedback	HVAC Sensors	Thermal Comfort Managing Tool	Performan ce data (INF 6.4)	Reliable monitori ng and feedbac k systems

3.3.5.UC – GR 5: Predictive Maintenance of Heat Pump and PV Systems

Description of the Use Case

Use case Identification							
ID	Title	Domain					
GR5	Predictive Maintenance of Heat Pump and PV Systems	Integrated Energy Systems					

Version Management							
Version No	Date	Name of authors	Changes				
01	14.11.24	RENEL	Complete Use Case Description				
02	13.12.24	Pantelis Botsaris (DUTH)	Review				
03	20.02.25	George Karatzinis, Kyriaki Fanaridou (CERTH)	Additional Information Added				
04	01.04.24	Tsompanidou Eleni (CERTH)	Revisions of the use case				

Classification Information			
Pilot Involved	Greek Pilot, led by PTHERM, DUTh, Certh, Renel		
Relation to Other Use Cases	 UC – GR 3: Capturing of telemetry data 		
Related Innovative SEEDS solutions	 Predictive Maintenance Service dedicated to electrification systems (T4.4.1 - Greek Pilot) 		
Assets of the UC	PV system and Heat pump		

	Scope and Objectives of Use Case
Scope of the use case	This use case focuses on intelligent control mechanisms for heat pump modulation, thermostat optimization and PV reflector, and predictive maintenance of energy assets (PVs, Heat Pump)., in order to enhance system performance and reliability
Objectives of the use case	 Ensure reliable operation of heat pump and PV systems through predictive maintenance, enabling long operational life and minimal disruptions.
Limitations & Assumptions	 IoT-enabled sensors and smart control systems are available.

	Narrative of Use Case
Short Description	This use case integrates predictive maintenance techniques to detect potential faults in energy assets, ensuring long-term system reliability and performance.
Complete Description	The use case addresses the predictive maintenance of Heat Pump and photovoltaic (PV) systems to enhance system performance and energy efficiency. Furthermore, predictive maintenance techniques utilize real-time and synthetic data to detect and classify faults in heat pump and PVystems.

Diagrams of the UC

Technical Details of the UC

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
DUTh residents and employees	End-User	Consumers who use the system (e.g., through PV).	Mainly residential consumers.
DUTh, CERTH, PSYCTO, RENEL employees	Research	Research on innovative energy generation-demand systems.	Important for all partners to improve know-how in such systems.
Municipality	Beneficiary	The region benefits from energy advancements.	Achieves sustainability goals.
IoT Sensors	Device	Monitor temperature, occupancy, HVAC performance, solar radiation	Provide real-time data
Predictive Maintenance Tool	System	Analyzes data and detects faults in heat pump and PV systems	Uses data for predictive maintenance
Facility managers	End-User	Oversee system operation.	

Step-by-step analysis of use case

Overview of scenarios

Scena	Scenario Conditions						
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition	
S01	Seasonal short-term fault detection in PV systems	During winter the tool detects PV malfunctions in PV systems using hourly data, analyzing the impact of lower temperatures and reduced irradiance. In summer the scenario will evaluate the fault detection under higher ambient temperatures and irradiance. Fault scenarios are emulated by adding noise to real data.	Predictive maintena nce tool (T4.4.1)	Hourly energy data shows anomalies.	Synthetic data from PV systems including ambient temperature and irradiance containing faults are available. Real-time sensory data from the IoT platform are accessible for fault creation and testing.	Faulty behaviors are detected and classified, and results are logged to understand and address seasonal challenges.	
S02	Winter Short- Term Fault Detection in Heat Pump Systems	During winter the tool monitors hourly data to assess fault detection accuracy under low temperatures and high heating demands. Since no actual breakdowns are expected, noisy signals will be imposed on the input data to emulate faults.	Predictive maintena nce tool (T4.4.1)	Anomalies detected in energy consumpti on patterns.	Synthetic data from HP systems containing faults are available. Real-time sensory data from the IoT platform are accessible for fault creation and testing.	Faulty behaviors are detected and classified, and results are logged to understand and address possible winter challenges.	

Steps per scenario

Scenario Name Seasonal short-term fault detection in PV systems								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Informa tion Receive r (Actor)	Informati on exchang ed (IDs)	Requirements, R-ID
St1	Fault Emulation	Synthetic simulation of faults	Noisy signals are added to real-life input data to emulate faults and validate detection mechanisms for different seasonal conditions.	Fault emulatio n	IoT Platform (Greek Pilot - DUTH)	Predicti ve Mainte nance Tool	Fault- emulated data (INF 7.1)	loT platform data are available.
St2	Fault Detection and Classificat ion	Fault classificat ion	The predictive maintenance tool monitors hourly energy data for unusual patterns and identifies what kind of faults are happening considering the different effects of winter and summer conditions.	Fault Detectio n	Predictive Maintenan ce Tool	Predicti ve Mainte nance Tool	Fault type and anomalie s (INF 7.2)	Hourly energy data that shows faults
St3	Insights Logging	Performan ce Feedback	The tool saves details about detected faults and seasonal trends, helping operators understand recurring problems and plan better maintenance.	Monitori ng	Predictive Maintenan ce tool	Facility manag ers and Mainte nance Team (DUTH)	Seasonal insights log (INF 7.3)	Logging system for storing insights.

Scena	rio Name	Winter Short-Term Fault Detection in Heat Pump Systems						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Require ments, R- ID
1	Fault Emulatio n	Synthetic simulation of faults	Noisy signals are added to real-life input data to emulate faulty behaviors in heat pumps since no faults are expected during testing period.	Fault emulatio n	IoT Platform (Greek Pilot - DUTH)	Predictive Maintenanc e Tool	Fault- emulated data (INF 7.1)	loT platform data are available.
2	Fault Detection and Classific ation	Fault classificat ion	The predictive maintenance tool monitors hourly energy consumption data for unusual patterns and identifies fault types based on winter-specific conditions like low temperatures and high heating demand.	Fault Detectio n	Predictive Maintenanc e Tool	Predictive Maintenanc e Tool	Fault type and anomalies (INF 7.2)	Hourly energy data that shows faults
3	Insights Logging	Performan ce Feedback	The tool saves details about detected faults and winter trends, helping operators understand recurring problems and plan better maintenance.	Monitori ng	Predictive Maintenanc e tool	Facility managers and Maintenanc e Team (DUTH)	Seasonal insights log (INF 7.3)	Logging system for storing insights.

3.3.6. UC – GR 6: Participation in Demand Response Schemes

Description of the Use Case

Use case Identification		
ID	Title	Domain
GR6	Participation in Demand Response Schemes	DER, Flexibility

Version N	Version Management				
Version No	Date	Name of authors	Changes		
01	20.06.24	Tsompanidou Eleni (CERTH)	Initial draft outlining the main idea and scope.		
02	10.12.2024	lakovos Michailidis (CERTH)	Additional Information Added		
03	04.04.2025	Tsompanidou Eleni (CERTH)	Revisions of the use case		

Classification Information			
Pilot Involved	Greek Pilot, led by DUTh, CERTH		
Relation to Other Use Cases	 UC – GR 3: Capturing of telemetry data 		
Related Innovative SEEDS solutions	 Baseline Consumption Simulation Tool (T2.3 – T5.1 Greek Pilot) Flexibility Forecasting Module (T5.1-Greek Pilot) Demand Reshaping tool (T5.2-Greek Pilot) Grid-Support-Manager (WP5 – Greek Pilot) 		
Assets of the UC	Multi-source HP, bi-facial PV, PLC, EV chargers, sensors on dorm rooms (20 out of 68 rooms) and central measuring sensors located in the building's basement.		

	Scope and Objectives of Use Case
Scope of the use case	This use case aims to establish the most appropriate sequence of actions and collaboration among the available tools, in order to optimize DR participation by leveraging implicit (price-based) and explicit (event-based) demand-side flexibility mechanisms in both building and district level.
Objectives of the use case	 Increase energy efficiency by enhancing the use of renewables and promoting flexibility in demand. Design and implement smart operational directives to optimize energy flows across integrated resources (generation, demand-side) Minimize the aggregator's energy costs for a specific demand Demand side flexibility forecasting in a day ahead manner.
Limitations & Assumptions	 Availability of Real-Time and Forecast Data Demand response strategies require user participation

	Narrative of Use Case
Short Description	This use case provides optimal DR signals, whether through implicit price- based mechanisms (building level) or explicit DR events (district level), without raising the end-users' discomfort above agreed or acceptable levels.
Complete Description	The implicit DR mechanism generates price-based recommendations to influence end-user energy consumption patterns, aligning demand with periods of lower electricity prices or high renewable generation, in building level. The explicit DR mechanism focuses on event-based participation, where users adjust consumption in response to market or grid signals, based on district level optimization. A flexibility forecasting module predicts demand flexibility a day ahead, optimizing DR engagement. The demand reshaping tool dynamically adjusts load in response to market price fluctuations or DR event calls. The system ensures real-time monitoring and feedback collection, refining strategies for future DR participation.

Diagrams of the UC

Technical Details of the UC

Actors							
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case				
End-users (Flexible Consumers/Buildings)	End-User	Consumers who use the system. Adjust energy consumption based on Al- optimized signals	Includes residential, commercial, or industrial consumers participating in DSM.				
IoT platform (and Visual Analytics Engine)	Application	Collects real-time grid data (load, voltage, frequency).	Provides historical and real- time data				
Baseline Consumption Simulation Tool	System	Provides simulated consumption data based on historical consumption					
Flexibility Forecasting Tool	System	Real-time power flow analysis: Predicts demand-side flexibility based on historical and real- time data and simulated data.	Provides day-ahead demand flexibility insights				
Demand Reshaping Tool	System	Recommends new optimal consumption curves based on ToU tariff on building level	Implements optimal demand reshaping strategies				
Grid-Support-Manager	System	Al-driven tool that provides real-time Demand Response (DR) signals and ancillary services (frequency/voltage support) for grid stability.	Generates optimized DR actions for congestion management and grid support.				
Building manager	End-User	Responsible for load adjustments at the building level based on received DR signals.					

Actors						
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case			
District manager	End-User	Oversees grid operations at the district level and acts as intermediary in DR actions.				

Step-by-step analysis of use case

Overview of scenarios

Scenario Conditions								
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre- condition	Post-Condition		
S01	Building-level demand-side flexibility forecasting	Assessment and prediction of demand-side flexibility bounds in a day ahead manner.	Flexibility Forecasting Tool/ Demand Reshaping Tool	Automated Periodic Triggered (DUTh- CERTH)	Availability of historical and real-time energy data access. Availability of weather data	Availability of historical and real- time (simulated?) energy data access. Accurate prediction of demand flexibility bounds for the next day with the use of INTEMA and the Forecasting Tool.		
S02	District-level Al- Driven Grid Stability & Congestion Management	The Grid-Support- Manager uses Al- powered solutions to provide grid stability services on district level based on real- time grid conditions.	Grid- Support- Manager	Detection of congestion, or a request from the district manager for support	S01	S02		

Steps per scenario

Scena	rio Name	Building-le	Ilding-level demand-side flexibility forecasting						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Requirem ents, R-ID	
1	Receipt of Forecast Data	Demand- Side Flexibility Forecasti ng	Collect and process day-ahead forecasts to estimate flexibility bounds.	Foreca sting and Monitor ing	Baseline Consumpti on Simulation Tool /Forecastin g Tool	Demand Reshaping Tool	Demand- Side Flexibility Forecast (INF 5.1)	Accurate real-time and forecast data availability	
2	Forecast or Price Update	Forecasti ng and Monitorin g	Processes day- ahead forecasts or detects significant intra day tariff deviations.	Foreca sting and Monitor ing	Demand- side Flexibility Forecastin g Tool and Electricity Market	Demand Reshaping Tool	Forecast or Tariff Update (INF 5.2)	Real-time or forecast data availability	
3	Policy Evaluati on	Policy Simulatio n	Policies are simulated to determine the best trajectory for load adjustments based on updated inputs.	Policy Simulat ion	Demand Reshaping Tool	Building Manager	Recommen ded Policies (INF 5.3)	Policy evaluation logic implement ed.	
4	Policy Recom mendati on	Load Adjustme nt reccome ndation	The tool sends recommendations to the building manager to adjust loads dynamically.	Load Adjust ment reccom endatio n	Demand Reshaping Tool	Building Manager	Load Adjustment Instructions (INF 5.4)	St3	
5	Feedbac k Collectio n	Impact Monitorin g	The system collects data on policy impact to refine future strategies.	Feedba ck Collecti on	loT platform	Demand Reshaping Tool	Performanc e Feedback (INF 5.5)	Monitorin g and feedback infrastruct ure.	

Scena	nario Name District-level AI-Driven Grid Stability & Congestion Management							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Require ments, R- ID
1	Data collectio n	Al-Based Data Monitorin g & Analysis	System collects real-time loads and building level flexibility forecasts.	Monitor ing & Al Predicti on	IoT platform/ Demand reshaping tool	Grid- Support- Manager	Real-time Data (INF 5.6)	Real-time data availabilit y
2	Grid stability issue detected	Al-Based Stability Assessme nt	Al algorithms assess potential grid instability (congestion)and predict risks.	Al Grid Analysi s	Grid- Support- Manager	District manager	Stability Alert (INF 5.7)	AI analytics enabled
3	District manage r request or automat ed trigger	Ancillary Services & DR Action Signal Creation	Based on AI analysis or a direct district manager request, the tool generates custom DR action signals targeting end-users.	DR Manag ement & Ancillar y Service s	Grid- Support- Manager	District manager	DR Action Signal (INF 5.8)	St2
4	Recom mendati on of DR action	Load Adjustme nt & Stability Support reccomen dation	The district manager forwards the DR signal, recommending adjustment of consumption, storage, or local generation.	Load Control & Ancillar y Service s	loT Platform	End-users	Load Adjustment Reccomenda tion (INF 5.9)	Active user participat ion in DR
5	Respons e evaluati on & Al feedbac k loop	Impact Assessme nt & Al Optimizati on	The system collects response data on DR execution, evaluates effectiveness, and uses AI to refine future strategies.	Al Feedba ck & Optimiz ation	loT platform	Grid- Support- Manager	Performance Feedback (INF 5.10)	Al-based learning & optimizat ion enabled

3.4. USE CASES OF HUNGARIAN PILOT (HU)

3.4.1. UC – HU 1: Setting up and testing the system to be deployed

Description of the Use Case

Use case Identification						
ID	Title	Domain				
HU1	Setting up and testing the system to be deployed	Smart Buildings, Energy Management, Building Automation				

Version Management						
Version No	Date	Name of authors	Changes			
01	15.04.2025	Peter Grabner (Profigram), György László (Fair C), Károly Matolcsy (ÉMI)	-			
02	04.05.2025	Peter Grabner (Profigram), György László (Fair C), Károly Matolcsy (ÉMI)	Corrections to clarify the use case. Revision and simplification of roles. Improvement of process transparency.			

Classification Information					
Pilot InvolvedHungarian Pilot led by Profigram, FAIR C, ÉMI, HORBER					
	 UC – HU 2: Control system design and construction 				
Relation to Other Use Cases	 UC – HU 4: Integration of Electric Vehicle Charger 				
	into the MPC Framework				
Polated Innovative SEEDS	Microgrid controller for PV production, storage and				
solutions	consumption of the VRV, for optimal operation and				
Solutions	maximizing RES				
Assets of the UC VRV system, PV, Storage, EV charger					

	Scope and Objectives of Use Case								
Scope of the use case	The objective of this use case is to design the system outlined in the Hungarian project section, construct it using commercially available components, and conduct thorough testing. The testing phase will focus on evaluating the performance of the integrated data links, assessing both the physical reliability of the connections and the quality of the transmitted data.								
Objectives of	1. System Design and Implementation: To design and assemble the								
the use case	target system using commercially available hardware and software components in accordance with the specifications defined in the								
	Hungarian project section.								
	2. Integration of Data Links: To integrate data communication links within the system architecture, ensuring compatibility between components and reliable operation								
	3. Verification of Physical Connectivity: To test and verify the physical								
	integrity and stability of the data connections under realistic operating conditions.								
	4. Data Quality Assessment: To evaluate the accuracy, consistency, and								
	reliability of the data transmitted through the system's communication								
	links.								
	5. Functional Validation: To confirm that the complete system functions as intended and meets the performance requirements outlined in the project specifications.								
	6. Identification of Potential Issues: To detect and document any								
	operational issues, data loss, or degradation in communication quality during testing.								
	7. Documentation and Reporting : To provide clear documentation of the								
	system setup, test procedures, and results for use in future								
	development phases or replication.								
Limitations	Limitations:								
&	1. Commercial Component Constraints: The system is limited to the								
Assumptions	capabilities and specifications of commercially available tools, which								
	may restrict customization and performance optimization.								
	2. Testing Environment : Lests will be conducted under controlled or semi-								
	world operational environments								
	3. Scalability Not Addressed: The use case focuses on a prototype or								
	demonstration-scale system.								

Г

	4. Limited Duration of Testing: The testing period may not be long enough						
	to uncover long-term reliability issues or rare intermittent faults in the						
	data links.						
	5. Dependency on Manufacturer Specifications: System performance						
	and integration depend on the accuracy and completeness of vendor-						
	provided documentation and data sheets.						
	6. Interoperability Constraints: There may be limitations in						
	interoperability between components from different vendors due to						
	protocol mismatches or proprietary standards.						
As	sumptions:						
	1. Component Availability: All required hardware and software						
	components are readily available on the commercial market and can be						
	procured within project timelines.						
	2. Standard Protocol Support: It is assumed that all selected components						
	support standard communication protocols compatible with the						
	intended data links.						
	3. Stable Power and Network Infrastructure: The system will be tested in						
	an environment with a stable power supply and network connectivity.						
	4. No External Interference: It is assumed that there will be minimal						
	electromagnetic or physical interference affecting data transmission						
	during testing.						
	5. Baseline Configuration Accuracy: The initial configuration and						
	calibration of system components are assumed to be correct and						
	consistent with manufacturer guidelines.						

Narrative of Use Case

Short Description	This use case focuses on designing and building a prototype system using commercially available components, as defined in the Hungarian pilot. It aims to test the functionality and reliability of integrated data communication links, evaluating both their physical performance and the quality of the transmitted data.
Complete Description	As part of the Hungarian project initiative focused on developing scalable, data- driven solutions, this use case addresses the practical realization of a digital communication system using off-the-shelf components . The aim is to bridge the gap between conceptual design and real-world applications by creating a prototype that demonstrates the viability, reliability, and performance of data links in an integrated system. Multiple actors are involved in this effort:

- 1. Engineers and Developers aim to design and test communication interfaces and identify challenges before deployment.
- 2. Project Stakeholders and Funders expect a demonstrable proof-ofconcept system that provides insights for future upscaling.
- 3. End Users (e.g., energy managers or infrastructure operators, the inhabitants of the house) are ultimately interested in systems that ensure data reliability and interoperability with minimal custom development.

The use case is designed to deliver these expectations by providing a replicable, test-based methodology for system validation.

This use case encompasses the design, assembly, and evaluation of a prototype communication system. The system is to be built entirely from commercially available hardware and software tools. A key focus of the use case is the testing of integrated data links, both in terms of physical connectivity and data quality. The outcomes will inform broader project goals, such as system standardization, integration strategies, and readiness for real-world deployment in smart infrastructure or energy systems.

Methodology and Step-by-Step Implementation:

1. Requirements Analysis

Functional Requirements (What functions must the system perform?), Performance Requirements (What levels of accuracy, speed, and reliability are needed?), Input/Output (I/O) Listing (What sensors will provide input signals? What actuators need to be controlled? Are they analog or digital signals?), Safety Requirements (What safety functions are necessary? Which standards must be met?), Operator Interface (HMI/SCADA) Needs (How will the operating personnel monitor and control the system? What data needs to be displayed and logged?), Environmental Conditions (Where will the system operate (temperature, humidity, dust, vibration, hazardous areas)?

When: At HU pilot initiation

Why: To ensure technical alignment with the Hungarian project

Who: Modeling expert, control engineer and project managers

Expectation: A clear list of required functionalities, interfaces, and performance indicators

Output: Specification document including required protocols, data rates, and environmental conditions

- 2. System Design
- a) Architecture Selection: Choosing the most suitable type of control system.),
- b) Hardware Design:

	 Select specific controllers (PLC CPU) and I/O modules based on the specification,
	 Finalize the types and parameters of sensors and actuators, Design the network topology and protocols (e.g., Ethernet/IP, Modbus) for communication between devices, Design the control panel(s) (layout, sizing, cooling), Design the power distribution (power supplies, circuit breakers), Design the pofety circuits in detail
c)	• Design the safety circuits in detail.
0)	 Design the structure of the control logic (e.g., steps of sequential control, state machines, main control loops), Preliminarily define control algorithms (e.g., initial PID parameters), Create the design/layout for HMI/SCADA screens. Develop the data acquisition and logging strategy. Design the alarm strategy,
d)	• Define programming standards and naming conventions. Component Selection and Procurement: Based on the designs, select and order the specific hardware components (PLC, modules, sensors, actuators, cables, terminals, switches, power supplies, enclosures, etc.) from suppliers.
	When: After finalizing system requirements Why: To select the most compatible and cost-effective commercial tools, design the integration of components Who: Engineers and procurement officers Expectation: Availability, technical documentation, support, and protocol compatibility
	Output: Bill of Materials (BoM) with part numbers, data sheets and
2	actailed technical documentation
5.	When: Upon arrival of components
	Why: To physically construct the system
	Who: Engineers and system integrators
	Expectation: Proper cabling, power supply management, physical
	Output: Fully wired and powered prototype with preliminary
	communication setup
4.	When: Once hardware is set up
	Why: To configure IP addresses data rates protocol stacks and
	mappings

113

Who: System software engineers and network specialists
Expectation: Establishment of reliable communication between modules
Tools: Vendor configuration tools, protocol testers
Output: Fully integrated system with functional data links
5. Testing Phase
When After configuration
Why. To verify system performance and identify issues
Who: OA/test engineers
Expectations and Tools:
Physical Tests: Cable strain, connection durability
Protocol Tests: Latency, handshake success rate, failover
handling
 Data Tests: Timestamp accuracy packet loss, data corruption
checks
Output: Test reports, error logs, improvement suggestions
6. Data Quality Assessment
When: During and after testing
Why: To ensure data is trustworthy for real-world decision making
Who: Data analysts
Expectations: No duplicates, synchronization issues, or missing values
Output: Data integrity report
7. Issue Mitigation and Refinement
When: Based on test results
Why: To improve reliability and address critical faults
Who: Development team
Expectation: Final system meets all functional requirements
Output: Refined system with improved performance
8. Final Documentation
When: After testing is complete
Why: To ensure reproducibility and transparency
Who: All technical teams involved
Output: User manual, configuration guide, test results, recommendations
I his use case delivers a functional, tested, and documented system built from
reading available tools, representing a critical step toward scalable and
interoperable smart solutions. It not only provides insight into the technical
reasibility of confinencial integration but also serves as a foundation for future
phot projects, product development, or deployment in energy, intrastructure, or industrial domains

General Remarks

Primary Actor roles do not necessarily mean a separate team member. This is currently being clarified.

Diagrams of the UC

Sequence diagram of the use case						
System Planning and Procurement :						
Control Engineer Modeling Expert Project Manager System Design System to be procured System Documentation Step 1: Requirement Specification						
Validate requirements Define system architecture						
Confirm system design Provide Bill of Materials (BoM)						
Step 3: Procurement Process Place orders Confirm delivery Update procurement records						
Control Engineer Modeling Expert Project Manager System Design System to be procured System Documentation						
System Assembly and Integration						

	2	Ģ		Ç									
_	Ţ		_	Ţ	_								
System Ir	ntegrator	Control E	ngineer	Project Ma	anager	PLC Co	ntroller	MPC Server	Devices (senso	rs/actuators)	Other softwa	are systems	System Documentation
	1						Step 1: I	Physical Instal	ation				
	Install par	els, senso	rs and act	uators at fi	eld locations		1	-			1		
	Install MP	C server ar	nd control	panel			1		>		1		
	Install PLC	controller	and contr	olpanel			1	\rightarrow			1		
						\rightarrow	1						
							itep 2: N	letwork Initiali	zation		1		
	Establish	connection	and basic	configurat	ion		1						
	Establish	connection	and basic	configurat	ion		 				1		
	Establish	connection	and basic	configurat	ion				>				
							Step 3:	Integration Cl	neck				
	Power-on	and valida	te I/O and	communic	ation		1						
	Integrati	on status	and readin	ess report			1						
	Power-on	and valida	te I/O and	communic	ation		1						
	Integrati	on status	and readin	ess report			1	>			1		
	< Power-on	and valida	te I/O and	communic	ation		1				1		
	Integrati	on status a	and readin	ess report			1				1		
		1				Chan A. C.	A	Configuration (an MDC anatam	1			
	1	1				Step 4: St	oπware	Configuration 1	or MPC system	J	1		
	1	-	Establish	connection	and basic config	uration	 				>		
		-	Software	environme	nt for the MPC ser	ver	 	\rightarrow			1		
		-	Software	environme	nt for the PLC cor	nmunication >	1						
							Step !	5: Documentat	ion				
	Submit ph	ysical and	software o	configuratio	on details		1				1		
			Submit so	oftware con	figuration details						1		
					Compile final doc	umentation	1				1		
System Ir	ntegrator	Control E	ngineer	Project Ma	anager		ntrollor	MPC Server	Devices (sense	rc/actuators)	Other coffw	ro systems	System Decumentation
(2)	· ·	_		ntroller	MPC Server	Devices (senso	s/actualors)	Other softwa	are systems	system Documentation
/	L.												
	•				•								
Validat	tion												

Technical Details of the UC

Actor Name	Actor Type	Actor Description	Further Information Specific to this Use Case	
Modeling Expert	Human	Basic MPC system design	He is responsible for developing the basic concept of the MPC system and providing data and information for hardware design.	
Control Engineer	Human	Responsible for translating project requirements into system architecture and define compatible hardware/software components	Initiates the design process based on specifications from the Hungarian pilot site.	
System Integrator	Human	Assemble and integrate physical	Connect components and ensure data links are	

anc cor sys		and software components of the system.	physically and logically functioning.
Data Analyst	Human	Verifies system functionality, physical link stability, and operational performance.	Runs tests to validate physical links, communication, and system reliability.
Project Manager	Human	Oversee the entire use case process and ensure objectives and documentation are met.	Compiles reports and documentation based on testing results and coordinates between technical roles.
System to be procured	System	Equipment necessary for system construction and testing	It consists of various commercially sourced components and serves as the test platform.
PLC Controller	System	Programmable Logic Controller	A PLC (Programmable Logic Controller) is a rugged industrial computer that automates machines and processes. It continuously reads inputs (from sensors), executes a user-written program (control logic), and controls outputs based on that logic and the parameters of the MPC server.
MPC server	System	A server running the complex MPC algorithm	An MPC server would be a computer or server running the complex MPC algorithm. It receives real- time data from the plant (PLC), runs the optimization calculations, and sends the calculated optimal control actions (e.g., setpoints for lower- level controllers) back to the control system.
Devices	System	All equipment necessary for the construction of the system.	Sensors, actuators, PLC, Industrial PC

Step-by-step analysis of use case

Overview of scenarios

Scei	nario Condition	s		Scenario Conditions										
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post-Condition								
1	System Planning and Procurement	The project team begins designing the system according to the project specification. and based on commercial components.	Control Engineer	Project scope is approved	The basic requirements are clear. The architectural, mechanical, and electrical designs have been completed and are available.	System design is completed and documented. The necessary purchases have been made. Reports and plans are created								
2	System Assembly and Integration	The system is physically built and wired based on the design plan.	System Integrator	Components are received.	All components are available and ready for assembly.	Communication between system parts is established. Hardware interfaces are physically connected. The data connections are working, and the sensors are accessible. Reports are created								
3	Validation	The system is tested for expected behaviors and operational scenarios. The team verifies the physical stability and robustness of the data links and assesses the accuracy and reliability of transmitted data.	Control Engineer	All components are configured	Complete system is online and stable.	System passes (or fails) all functional tests. Physical communication links are validated. Data quality is assessed and confirmed (or issues are logged) Reports are created								

Sce Na	enario ame:	System Plann	ing and Procuremen	t				
Step No.	Event	Name of Process/Act ivity	Description of Process/Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Informati on Exchange d	Require ments (R-ID)
1.1	Concep t Develo pment	MPC system basic concept by technical plans	ME shares the conceptual foundation of the MPC system based on technical plans.	System Design Service	Modeling Expert (ME)	Control Engineer (CE)	Conceptu al MPC framewor k	R-ID-01
1.2	Require ments Exchan ge	Provide functional and technical requirement s	CE specifies the functional and technical requirements for system development.	Specific ation Service	Control Engineer (CE)	Modeling Expert (ME)	Function al requirem ents documen t	R-ID-02
1.3	Require ment Validati on	Validate requirement s	ME reviews and validates the requirements for correctness and feasibility.	Review Service	Modeling Expert (ME)	Control Engineer (CE)	Validated requirem ents	R-ID-02
1.4	System Archite cture Definiti on	Define system architecture	CE defines the overall architecture based on validated requirements.	System Design Service	Control Engineer (CE)	System Design (SD)	System architect ure diagram	R-ID-02
2.1	Design Confir mation	Confirm system design	SD confirms the finalized system design to the CE.	Design Confirm ation	System Design (SD)	Control Engineer (CE)	Confirme d system design	R-ID-02
2.2	BoM Prepara tion	Provide Bill of Materials (BoM)	CE prepares and delivers the list of required components to the PM.	Specific ation Service	Control Engineer (CE)	Project Manager (PM)	Bill of Materials (BoM)	R-ID-03
3.1	Orderin g Compo nents	Place orders	PM places orders for components with selected suppliers.	Procure ment Service	Project Manager (PM)	Procuremen t System (PS)	Purchase orders	R-ID-03
3.2	Order Confir mation	Confirm delivery	PS confirms receipt and processing of orders to PM.	Procure ment Confirm ation	Procurement System (PS)	Project Manager (PM)	Delivery confirmat ions	R-ID-03

3.3	Procure ment Record Update	Update procuremen t records	PM updates internal records with procurement and delivery status.	Procure ment Docume ntation	Project Manager (PM)	System Documentat ion (DOC)	Procurem ent logs	R-ID-03
4.1	Design Docum entatio n	Provide design documentat ion	CE submits design documents for official project records.	Docume ntation Service	Control Engineer (CE)	System Documentat ion (DOC)	Design documen ts	R-ID-10
4.2	Docum entatio n Compil ation	Compile technical and procuremen t documents	PM compiles all relevant documentation into a project report.	Docume ntation Service	Project Manager (PM)	System Documentat ion (DOC)	Compiled project documen tation	R-ID-01 R-ID-02 R-ID-03

Sc N	enario ame:	System Ass	sembly and Integ	ration				
Step No.	Event	Name of Process/ Activity	Description of Process/Activ ity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information Exchanged	Require ments (R-ID)
1.1	Field Installat ion	Install panels, sensors and actuators	System Integrator installs panels, sensors, and actuators at field locations.	Installati on Service	System Integrator (SI)	Devices (DEV)	Installed field hardware	R-ID-01
1.2	Server Installat ion	Install MPC server and control panel	System Integrator installs the MPC server and its related infrastructure.	Installati on Service	System Integrator (SI)	MPC Server	Mounted MPC hardware	R-ID-01
1.3	PLC Installat ion	Install PLC controller and control panel	System Integrator installs the PLC controller and connects it to the system.	Installati on Service	System Integrator (SI)	PLC Controller	Installed PLC hardware	R-ID-01
2.1	PLC Connect ion	Establish connectio n and basic configurat ion	Basic network setup and handshake procedures are	Network Configur ation	System Integrator (SI)	PLC Controller	Basic config parameters	R-ID-01

r								
			established with the PLC.					
2.2	MPC Connect ion	Establish connectio n and basic configurat ion	Basic network setup and handshake procedures are established with the MPC.	Network Configur ation	System Integrator (SI)	MPC Server	Basic config parameters	R-ID-01
2.3	Device Connect ion	Establish connectio n and basic configurat ion	Devices are connected to the system and undergo basic communicati on checks.	Network Configur ation	System Integrator (SI)	Devices (DEV)	Connectivity report	R-ID-01
3.1	PLC Integrati on Test	Power-on and validate I/O and communi cation	Power is applied to the PLC and communicati on and I/O signals are verified.	Integrati on Test	System Integrator (SI)	PLC Controller	Integration test results	R-ID-01
3.2	MPC Integrati on Test	Power-on and validate I/O and communi cation	Power is applied to the MPC and interfaces are verified.	Integrati on Test	System Integrator (SI)	MPC Server	Integration test results	R-ID-01
3.3	Device Integrati on Test	Power-on and validate I/O and communi cation	Devices are powered up and communicati on paths and functionality are checked.	Integrati on Test	System Integrator (SI)	Devices (DEV)	Integration test results	R-ID-01
4.1	DB Configu ration	Establish connectio n and basic configurat ion	Control Engineer connects software components to the database/log ging environment.	Software Setup	Control Engineer (CE)	Other software systems (DB)	Software connection settings	R-ID-1
4.2	MPC Softwar e	Software environm ent for the	CE installs and configures the software	Software Setup	Control Engineer (CE)	MPC Server	Software installation and config files	R-ID-1

	Configu ration	MPC server	environment needed for MPC operation.					
4.3	PLC Commu nication Setup	Software environm ent for the PLC communi cation	CE configures communicati on layers and logic for MPC- to-PLC interaction.	Software Setup	Control Engineer (CE)	PLC Controller	Comm configuratio n	R-ID-1
5.1	Submit System Configu ration	Submit physical and software configurat ion details	System Integrator provides detailed setup and wiring documentatio n.	Docume ntation	System Integrator (SI)	System Documentat ion	Hardware configuratio n record	R-ID-1
5.2	Submit Softwar e Docume ntation	Submit software configurat ion details	Control Engineer provides software installation and configuration documents.	Docume ntation	Control Engineer (CE)	System Documentat ion	Software config documentat ion	R-ID-1
5.3	Compile Final Docume ntation	Compile final document ation	Project Manager gathers all documents into the official project archive.	Docume ntation	Project Manager (PM)	System Documentat ion	Complete documentat ion package	R-ID-1

Scenario Name:		Validation	Validation									
Step No.	Event	Name of Process/ Activity	Description of Process/Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information Exchanged	Require ments (R-ID)				
1.1	Trigger Functio nal Test	Trigger test routines	The Control Engineer triggers predefined test routines on the PLC to evaluate system response.	Functio nal Testing	Control Engineer (CE)	PLC Controller	Test command	R-ID-01				

1.2	Execut e Device Control	Send control signals	PLC sends control signals to the devices as part of the test sequence.	Device Control	PLC Controller	Devices (Sensors/Ac tuators)	Actuation commands	R-ID-01
1.3	Receive Device Feedba ck	Return feedback signals	Devices send feedback signals to confirm their operation and test status.	Signal Respon se	Devices (Sensors/Actu ators)	PLC Controller	Sensor readings	R-ID-01
1.4	Evaluat e I/O Integrit y	Report signal integrity	PLC evaluates the correctness and timing of feedback and reports back to CE.	Signal Evaluati on	PLC Controller	Control Engineer (CE)	Integrity report	R-ID-01
2.1	Start MPC Validati on	Start MPC validation mode	Control Engineer activates the validation mode on the MPC server.	Validati on Mode Activati on	Control Engineer (CE)	MPC Server	Mode start signal	R-ID-01
2.2	Control Loop Executi on	Issue optimize d control comman ds	MPC sends optimized control signals to PLC based on internal algorithms.	MPC Executi on	MPC Server	PLC Controller	Control setpoints	R-ID-01
2.3	Perfor m Device Actions	Execute comman ds	PLC forwards commands to devices, which perform the requested actions.	Executi on Control	PLC Controller	Devices (Sensors/Ac tuators)	Action execution	R-ID-01
2.4	Return Measur ements	Return process values	Devices provide process measurements back to PLC.	Feedba ck Data	Devices (Sensors/Actu ators)	PLC Controller	Measureme nt values	R-ID-01
2.5	Feedba ck to MPC	Send measure ment feedback	PLC sends the received feedback data to MPC for evaluation.	Feedba ck Loop	PLC Controller	MPC Server	Feedback report	R-ID-01
3.1	Verify Loggin g	Query logs	Control Engineer queries the database for recorded test and operation data.	Data Loggin g Verifica tion	Control Engineer (CE)	Database (DB)	Query request	R-ID-1
3.2	Return Logs	Return logged data	Database returns logs for verification.	Data Retriev al	Database (DB)	Control Engineer (CE)	Logged values	R-ID-1

4.1	Transfe r Test Data	Provide test data	Control Engineer shares the collected test data with the Analyst.	Test Reporti ng	Control Engineer (CE)	Analyst (AN)	Test dataset	R-ID-1
4.2	Generat e Report	Generate validation summary	Analyst creates a validation summary report from test results.	Report Generat ion	Analyst (AN)	Validation Report	Validation summary	R-ID-1
5.1	Submit Report	Submit validation report	The report is delivered to the Project Manager.	Submis sion	Validation Report	Project Manager (PM)	Validation report	R-ID-2
5.2	Archive Results	Archive final result	Project Manager archives the final validation report for project documentation.	Archivi ng	Project Manager (PM)	Validation Report	Archived report	R-ID-2

3.4.2. UC – HU 2: Control system design and construction

Description of the Use Case

Use case Identification								
ID	Title	Domain						
HU2	Control system design and construction	Smart Buildings, Energy Management, Building Automation						

Version Management									
Version No Date		Name of authors	Changes						
01	15.04.2025								
02	04.05.2025	Péter Grabner (Profigram), György László (Fair C), Károly Matolcsy (ÉMI)	Corrections to clarify the use case. Revision and simplification of roles. Improvement of process transparency.						

Classification Information				
Pilot Involved	Hungarian Pilot led by Profigram, FAIR C, ÉMI, HORBER			
Relation to Other Use Cases	 UC – HU 1: Setting up and testing the system to be deployed UC – HU 4: Integration of Electric Vehicle Charger into the MPC Framework 			
Related Innovative SEEDS solutions	 VRV system for central heating replacing individual room gas burner in residential buildings BEMS and Microgrid for integration and optimization of the integrated system in apartment buildings 			
Assets of the UC	VRV, PV, Storage, EV charger, BEMS, Microgrid			

	Scope and Objectives of Use Case					
Scope of the use case	The scope of this use case is to design, implement, and test a Model Predictive Control (MPC) system on the prototype developed in the first use case. The MPC will be integrated into the existing system architecture, which is composed of commercially available components and validated communication links. The primary focus is on using MPC to achieve optimal and predictive control of the system by leveraging real-time data and a process model to anticipate system behavior and adjust control actions accordingly. This use case encompasses all steps from model development and control logic design to software integration, simulation, and real-time deployment. The MPC will be tested under realistic operational conditions to evaluate its ability to manage system dynamics, constraints, and disturbances. The implementation should demonstrate enhanced performance, stability, and energy efficiency compared to traditional control approaches.					
Objectives of the use case	 Develop a Dynamic System Model: Build or identify a mathematical model that accurately represents the behavior of the prototype system using real data collected via validated communication links. Formulate an MPC Control Strategy: Define the prediction model, cost function, constraints, and optimization horizon for the MPC controller to ensure optimal and constraint-respecting control actions. Integrate MPC into the Existing System Architecture: Embed the MPC logic into the prototype system, ensuring compatibility with the existing hardware and communication interfaces established in the first use case. Simulate and Validate MPC Performance: Perform closed-loop simulations to test the performance, robustness, and stability of the MPC controller under different operating conditions and disturbances. Deploy the MPC in Real-Time Operation: Implement and test the MPC in the real system environment, using actual sensor data and control actuation, and monitor system response. Evaluate Control Quality and Efficiency: Analyze system performance metrics such as response time, energy consumption, stability, and tracking accuracy to validate the added value of predictive control. Ensure Safety and Robustness Under Constraints: Verify that the MPC can handle system constraints (e.g., input/output limits) and maintain safe operation even in the presence of uncertainties. 					

	parameters, control weights, constraints, and tuning guidelines for reproducibility.				
Limitations &	Limitations:				
Assumptions	1. Model Accuracy : The effectiveness of the MPC depends heavily on the				
	accuracy of the system model. Inaccurate or oversimplified models may				
	degrade control performance.				
	2. Computational Complexity : Real-time optimization required by MPC can				
	be computationally intensive, especially for non-linear or constrained				
	systems, limiting the controller's responsiveness on low-power				
	hardware.				
	3. Finite Prediction Horizon : The use of a limited prediction horizon may				
	not capture all long-term system effects, potentially affecting stability				
	and performance in slow-dynamic systems.				
	4. Limited lesting Scope: lesting is conducted on a prototype platform				
	disturbances or operational environments				
	5 Constraint Handling : While input constraints are treated as hard limits				
	output constraints may only be enforced through soft penalties, leading				
	to possible violations during unexpected disturbances.				
	6. Dependency on Communication Stability : Real-time control				
	performance assumes stable and timely data exchange, which relies on				
	the quality of the communication links validated in the first use case.				
	Assumptions:				
	1. Validated System Model: A reliable model of the system (linear or non-				
	linear) is available or can be developed using historical or real-time data.				
	2. Stable Operating Conditions: The system is assumed to operate in a				
	stable environment without unexpected disruptions of failure of critical				
	3 Sufficient Computational Resources: The processing platform (e.g.				
	embedded controller industrial PC) is assumed to have enough				
	computational capacity to run the MPC algorithm in real time.				
	4. Data Availability and Quality: High-quality, real-time measurements of				
	inputs and outputs are available via the data links from the first use case.				
	5. Known Constraints: All relevant system constraints (e.g., actuator limits,				
	safety margins) are assumed to be well-defined and constant during				
	operation.				
	6. Controller Initialization is Feasible : It is assumed that the MPC controller				
	can be initialized with a feasible state estimate and that the optimization				
	problem is solvable at each time step.				

	Narrative of Use Case
Short Description	This use case focuses on the development and integration of a Model Predictive Control (MPC) system into a prototype platform previously designed and tested with commercial components. The MPC aims to enhance system performance by using real-time data and a predictive model to optimize control actions under constraints. The implementation includes model formulation, real-time optimization, system integration, and performance evaluation in a realistic testing environment.
Complete Description	The scope of this use case is to design, implement, and test a Model Predictive Control system as an intelligent layer on top of the prototype platform developed in the first use case. The prototype system, which features validated data communication links and hardware integration, will serve as the physical environment for deploying and evaluating the MPC. This use case involves:
	 Developing or identifying a system model based on real data, Designing an MPC controller with constraints and optimization logic, Integrating the MPC into the prototype system architecture, and Testing the control system in real-time to evaluate its performance in terms of stability, constraint handling, and overall control quality.
	In the first use case, a prototype system was successfully designed, built, and tested using commercial components. This prototype includes data acquisition capabilities and reliable data links. Building on this foundation, the second use case aims to implement a smart control strategy—Model Predictive Control—that uses real-time optimization to forecast future behavior and adjust control inputs accordingly. MPC offers advantages such as: • Predictive and anticipatory behavior, • Explicit handling of system constraints, • Robustness to disturbances and uncertainty, • Superior tracking performance compared to classical PID control. The implementation of MPC will demonstrate the benefits of advanced control technologies on a functional prototype and lay the groundwork for future
	 Methodology and Step-by-Step Implementation 1. Requirements Analysis: Translate operational goals of the prototype into MPC objectives (e.g., minimize energy use, stabilize temperature etc.). When: At HU pilot initiation

Why: To define control objectives, constraints, and performance expectations
who: System designers and control engineers
Input: Prototype specifications, process knowledge
Output: List of control goals (e.g., setpoint tracking, constraint
management, energy efficiency)
2. Data Acquisition and Preprocessing: Use the data collected from the
prototype (via integrated data links) to develop or refine a mathematical
model of the system (state-space)
When: After prototype testing is complete (Use Case 1)
Why: To gather relevant input-output data for system identification
who: Data engineers, control team
Input: Logged sensor data, actuator commands
Output: Cleaned and structured datasets for modeling
3. System Identification and Modeling:
When: Following data preprocessing
Why: To derive a predictive model of the system
who: Control engineers, system modelers
a) zone inermai models: Developing dynamic thermai models for
each zone. These models will predict the future temperature of
each zone based on various inputs.
Consider factors like:
 Heat transfer coefficients: Walls, windows, roof, floor (R-values, U-values).
 Thermal mass: Capacity of walls, , air to store heat.
 Infiltration and ventilation: Air leakage and airflow.
 Internal heat gains: Occupants, lights, equipment.
• Solar radiation: Incident solar gains through windows and
walls (consider orientation and shading).
• Inter-zone heat transfer: If applicable, model heat exchange
between adjacent zones.
Model complexity can range from simple first-order RC
(Resistance-Capacitance) networks to more complex multi-state
models. The choice depends on the desired accuracy and
computational cost.
b) VRV Heat Pump Model
Consider factors like:
Heating and cooling capacity: Dependent on outdoor
temperature, indoor setpoints, and the number of active indoor
units.

130

Who: Control engineers

- a) Control Variables (Inputs): These are the variables that the MPC can manipulate to control the system. Examples include:
 - Heating/cooling power supplied to each zone by the VRV system.
 - Setpoints for individual indoor units (if directly controllable).
 - Activation/deactivation of auxiliary heating/cooling devices.
- **b) State Variables**: These are the variables that describe the current state of the system and are predicted by the models (e.g., zone temperatures).
- c) **Output Variables**: These are the variables that you want to control or monitor (e.g., zone temperatures, energy consumption).
- d) Optimization Problem Formulation: The MPC solves an optimization problem at each time step. To do this, the control variables, state variables and outputs must be used to define all the equations and inequalities that describe the overall system.
- e) Cost Function: Define a mathematical function that quantifies the objectives. This function will be minimized by the MPC. It typically includes terms related to:
 - Temperature deviations from setpoints (weighted by importance).
 - Energy consumption (weighted by cost).
 - Actuator usage (to avoid excessive switching).
 - Potential penalties for constraint violations.

Output: Mathematical formulation of the MPC optimization problem

5. Controller Simulation and validation

When: Before deployment

Why: To test the MPC in a virtual environment and verify performance Who: Control engineers

Tools: Python or other simulation frameworks

Output: Verified behavior of the MPC in nominal and disturbed conditions

6. Control Integration: Integrate the MPC algorithm into the prototype system's architecture.

When: After simulation validation

Why: To implement the controller in the physical prototype Who: System integrators

Steps: Embed MPC algorithm on hardware (e.g. PLC, industrial PC) Interface with sensors/actuators via communication links Output: Working MPC module in the prototype environment

7. Online Testing & Tuning: Run closed-loop tests in real-time. Tune weights, horizons, and slack penalties based on observed performance. When: Post-integration

Why: To test the control system in real conditions and adjust parameters Who: QA engineers, control developers
Focus Areas: Feasibility of optimization, Execution time (sample rate
compliance), Constraint handling under disturbances
a) Initial Parameter Tuning: Adjust the weights in the cost function and
the constraints to achieve the desired performance.
b) Validation: We must validate the MPC system through simulations and real-world testing.
c) Adaptive Control: We consider implementing adaptive control
techniques to update the model parameters online based on real-time data, accounting for changes in building characteristics or system performance.
Output: Tuned, stable, and responsive MPC system
8. Performance Evaluation
When: After sustained testing
Why: To assess improvements over baseline and validate KPIs
Who: Analysts
Metrics: Setpoint tracking, energy savings, constraint satisfaction, robustness
Output: Performance report
9. Documentation & Finalization: Document the MPC design choices, performance metrics, controller settings, and provide tuning guidelines for future users.
When: At the end of testing
Why: To support reproducibility, tuning, and future development
Who: Technical writers, Engineers
Deliverables: Controller structure, Tuning parameters, Simulation files,
Implementation guidelines
Output: Full documentation for operational use or replication
Output: Full documentation for operational use or replication

General Remarks

Primary Actor roles do not necessarily mean a separate team member. This is currently being clarified.

Diagrams of the UC

Sequence diagram of the use case					
System design and implementat	ion:				
\bigcirc	\bigcirc				
天	Ţ				
Control Engineer	Modeling Expert	MPC System Forecast Database			
	Step 1: MPC System specification				
	Begularment D	Entring			
	Requirement De	finition			
	Data Collection a	and Cleaning			
	<──				
	System Modeling	9			
MPC Formulation					
		•			
1	Step 2: MPC System implementation				
Designs the MPC controller	>				
Technological limitation and corre	ction				
Provide modified MPC model wit	h properly cost function				
Implement MPC model					
Implement Forecast Database		>			
	Step 3: Functional Testing of MPC				
	5				
					
Send simulated response					
Control Engineer	Modeling Expert	MPC System Forecast Database			
¥	¥				
\sim	\sim				
Real-Time System Testing and Perform	ance Evaluation:				

Technical Details of the UC

Actor Name	Actor Type	Actor Description	Further Information Specific to this Use Case
Control Engineer	Human	Designs the MPC controller. Develops or adapts the software environment for implementing MPC algorithms. Implements the MPC logic into the physical prototype using available hardware.	Responsible for implementing the MPC system and ensuring that it operates according to the specified logic. During implementation, he/she programs the PLC used during operation and the software modules that implement the MPC operation. May use Python or embedded C for controller deployment on the platform.
Modeling Expert	Human	Designs the MPC controller including model selection	Responsible for developing and validating the core logic of the MPC system. Prepares datasets used in modeling and evaluates control performance metrics.
Data Analyst	Human	Tests and validates the performance of the integrated system.	Runs simulations and real-time tests to verify correct charger control behavior.

Project Manager	Human	Oversee the use case timeline, coordination, and documentation.	Ensure all design steps are followed, tests are completed, and deliverables are compiled.
MPC Controller	Software Module	The algorithm that computes optimal control actions based on predictions.	Implemented using a control toolbox or custom code; directly controls system actuators.
Forecast Database	Software Module	This database stores external data used by MPC.	The MPC uses a lot of data during operation. Some of this data comes from measurements taken from the system, while other data comes from external sources. This data is stored in this database.
Evaluation Report	Document	Summary document for the scenario	This document summarizes the conceptual, implementation, and testing plans for the scenario, as well as the testing and tuning results.

Step-by-step analysis of use case

Overview of scenarios

Scer	Scenario Conditions							
No	Scenario Title	nario Title Scenario Description I		Triggering Event	Pre-condition	Post- condition		
1	System design and implementation	In this scenario, the external data collection and the design and implementation of the MPC system software are carried out using the installed hardware components. We define the conditions used in the model and the cost function. We build a working MPC system.		Start of Use Case 1	A validated and functionally working hardware system that is ready for the implementation of the MPC algorithm	A well- functioning MPC system adapted to the conditions of the test site		

2	Real-Time System Testing and Performance Evaluation	In this scenario, detailed integration testing of the developed MPC system is performed. During detailed testing, operational limitations are identified and the robustness of the system is enhanced, which is essential for continuous operation.		Completion of system integration and simulation validation	A well-functioning MPC system adapted to the conditions of the test site	A real-time tested, tuned, and evaluated MPC system ready for flexibility service provision under live conditions.
---	---	--	--	---	--	---

Scenario Name:		System design and implementation						
Step No.	Event	Name of Process/ Activity	Description of Process/Activity	Service	Information Producer (Actor)	Informatio n Receiver (Actor)	Informatio n Exchanged	Requ irem ents (R- ID)
1.1	Require ment Analysis	Requirem ent Definition	ME defines control objectives, constraints, and modeling requirements for the MPC system.	Design Specific ation	Modeling Expert (ME)	Modeling Expert (ME)	Control requiremen ts specificatio n	R-ID- 01
1.2	Data Preparati on	Data Collectio n and Cleaning	ME collects and preprocesses input- output data from the prototype system.	Modelin g Service	Modeling Expert (ME)	Modeling Expert (ME)	Cleaned datasets	R-ID- 02
1.3	System Modelin g	System Modeling	ME develops predictive system models using collected data.	Modelin g Service	Modeling Expert (ME)	Modeling Expert (ME)	Identified models	R-ID- 03
1.4	MPC Problem Formulat ion	MPC Formulati on	ME formulates the optimization problem for the MPC.	Control Design Service	Modeling Expert (ME)	Control Engineer (CE)	Optimizatio n problem formulation	R-ID- 04
2.1	MPC Controlle r Design	Designs the MPC controller	CE designs the controller implementation and control logic for MPC.	Controll er Design	Control Engineer (CE)	Modeling Expert (ME)	Design specificatio n	R-ID- 04
2.2	Impleme ntation Constrai nts	Technolo gical limitation and correctio n	CE communicates implementation limitations; ME adapts the model accordingly.	Model Adaptati on	Control Engineer (CE)	Modeling Expert (ME)	Implement ation feedback	R-ID- 04

2.3	Modified Model Delivery	Provide modified MPC model with properly cost function	ME delivers the final MPC model with cost function tailored to system limits.	Modelin g Service	Modeling Expert (ME)	Control Engineer (CE)	Modified MPC model	R-ID- 04
2.4	MPC Integrati on	Impleme nt MPC model	CE implements the finalized MPC logic on the target system.	Deploy ment Service	Control Engineer (CE)	MPC System	Deployed MPC controller	R-ID- 04
2.5	Forecast Integrati on	Impleme nt Forecast Database	CE connects the MPC to the forecast data system.	Integrati on Service	Control Engineer (CE)	Forecast Database (FD)	Forecast interface	R-ID- 04
3.1	Function al Test Definitio n	Definition of functiona l test cases	ME defines test scenarios to validate the control system functionality.	Testing Service	Modeling Expert (ME)	Control Engineer (CE)	Test case specificatio n	R-ID- 5
3.2	Simulati on Executio n	Initiate simulatio n	CE launches test simulations using the implemented MPC.	Simulati on Service	Control Engineer (CE)	MPC System	Simulation trigger	R-ID- 5
3.3	Simulati on Feedbac k	Send simulate d response	MPC provides output from the simulation runs for analysis.	Simulati on Output	MPC System	Control Engineer (CE)	Simulation results	R-ID- 5

Scenario Name:		Real-Time System Testing and Performance Evaluation							
Step No.	Event	Name of Process/ Activity	Description of Process/Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information Exchanged	Requ irem ents (R- ID)	
2.1	Test Strategy Definitio n	Definition of Test Strategy	ME defines the testing approach for evaluating real-time MPC performance.	Testing Service	Modeling Expert (ME)	Control Engineer (CE)	Test strategy plan	R-ID- 6	
2.2	Test Case Definitio n	Definition of Test Cases	ME provides detailed test cases to verify control logic under real-time conditions.	Testing Service	Modeling Expert (ME)	Control Engineer (CE)	Test case definitions	R-ID- 6	
2.3	Simulatio n Initiation	Initiate simulatio n	CE launches simulation on the prototype MPC using defined scenarios.	Simulatio n Service	Control Engineer (CE)	Prototype MPC	Simulation trigger	R-ID- 6	

l

2.4	Data Provision	Provide real-time data	MPC provides live control data during simulation to CE.	Data Exchange Service	Prototype MPC	Control Engineer (CE)	Live performanc e data	R-ID- 6
2.5	Paramet er Adjustm ent	Adjust paramete rs	CE adjusts controller parameters based on real-time test feedback.	Tuning Service	Control Engineer (CE)	Prototype MPC	Updated tuning parameters	R-ID- 4
2.1	Performa nce Data Collectio n	Collect performa nce data	AN gathers output and system response data from real-time MPC execution.	Evaluatio n Service	Analyst (AN)	Prototype MPC	Operational data logs	R-ID- 6
2.2	Evaluatio n Summar y	Generate evaluatio n summary	AN summarizes key performance metrics and system response.	Evaluatio n Service	Analyst (AN)	Evaluation Report	Performanc e summary	R-ID- 6
2.3	Report Submissi on	Submit report	Evaluation report is submitted to the Project Manager for review.	Evaluatio n Reporting	Evaluation Report	Project Manager (PM)	Evaluation results	R-ID- 6
3.1	Final Docume ntation	Compile final documen tation	PM prepares the complete project documentation including configuration, tuning, and results.	Documen tation Service	Project Manager (PM)	Evaluation Report	Final documentat ion package	R-ID- 7

3.4.3. UC – HU 3: Integration of Flexibility into MPC and Interaction with DSO

Description of the Use Case

Use case Identification				
ID	Title	Domain		
HU3	Integration of Flexibility into MPC and Interaction with DSO	Energy efficiency and flexibility activation		

Version Management				
Version No	Date	Name of authors	Changes	
01	15.04.2025			
02	04.05.2025	Péter Grabner (Profigram)	Corrections to clarify the use case. Revision and simplification of roles. Improvement of process transparency.	

Classification Information			
Pilot Involved	Hungarian Pilot led by Profigram, Fair C, ÉMI		
	 UC – HU 2: Control system design and construction 		
Relation to Other Use Cases	 UC – HU 4: Integration of Electric Vehicle Charger 		
	into the MPC Framework		
Related Innovative SEEDS	Interactive microgrid controller for the flexibility service and		
solutions	current demand of the DSO.		
Assets of the UC	MPC		

Scope and Objectives of Use Case				
Scope of the	The scope of this use case is to expand the capabilities of the Model Predictive			
use case	Control system developed in the second use case by modeling and exploiting			
	thermal storage in building mass and electrical storage in batteries. The			
	enhanced MPC will now respond not only to internal performance goals			
	(comfort, efficiency, cost) but also to external signals from the DSO, such as			
	price signals or load requests.			
	This will require:			

	 Modeling flexibility constraints and dynamic response capabilities, Integrating DSO data link communication into the control architecture, Testing the system in scenarios where the MPC reacts to DSO flexibility requests.
Objectives of the use case	1. Model Flexibility Resources : Represent the heat storage capacity of building elements and the battery's charge/discharge capabilities within the MPC framework
	 DSO Communication Integration: Use a validated data link to receive flexibility signals or schedules from the DSO.
	3. Design Flexibility-Aware MPC : Extend the optimization problem to balance local objectives (comfort, energy, cost) with grid-oriented services (e.g., peak shaving load shifting)
	 4. Implement Dynamic Scheduling Logic: Incorporate DSO signals (e.g., flexibility windows, energy limits) as inputs or constraints in the MPC formulation.
	 Test Response Scenarios: Simulate and validate the system's ability to follow DSO commands without violating internal performance criteria.
	 6. Evaluate Grid Support Metrics: Analyze system performance in terms of flexibility delivery, accuracy of tracking DSO signals, and internal
	trade-offs. 7. Document Use Case Results : Provide a detailed report of the test
	scenarios, model extensions, system behavior, and lessons learned.
Limitations &	Limitations:
Assumptions	1. Thermal Mass Modeling Complexity: Accurately capturing the
	dynamics of heat storage in building structures (walls, floors, roof structure) is challenging and may require simplifications that affect precision.
	2. Forecast Dependency : Flexibility planning depends heavily on accurate
	forecasts of occupancy, weather, PV generation, and grid signals.
	Errors in these forecasts can degrade performance.
	3. Battery Degradation and Efficiency: The MPC does not fully account for
	battery degradation over time or the variation in round-trip efficiency at
	different operating points.
	4. Entried DSO Signal Resolution. Communication delays of low update frequency from the DSO may limit the controller's responsiveness or
	cause missed flexibility windows.
	5. Multi-Objective Trade-offs: Balancing internal goals (comfort, cost
	savings) with external demands (DSO requests) may lead to suboptimal
	outcomes for one or both objectives.

 Comfort and Safety Prioritized: The system is allowed to prioritize safety (e.g., overheating prevention) and thermal comfort over DSO requests in conflict situations.
 Battery Operation Within Safe Limits: The MPC assumes that battery degradation effects are minimal over the timeframe of testing, and that it can safely operate within manufacturer-recommended charge or discharge cycles. DSO Requests Are Technically Feasible: It is assumed that the flexibility requested by the DSO does not exceed the actual physical and thermal limits of the building or the battery system.

	Narrative of Use Case
Short Description	This use case aims to enhance the previously implemented Model Predictive Control (MPC) system by incorporating flexibility from the building's thermal mass and the battery storage system. The upgraded controller is intended to interact with the Distribution System Operator (DSO) via a data communication link, enabling the building to participate in grid-support activities such as demand response, peak shaving, and self-consumption maximization. The MPC will balance internal objectives (e.g., comfort, energy cost) with external signals from the DSO, using flexibility intelligently.
Complete Description	 The scope includes modeling the building's passive thermal storage and battery capacity, reformulating the MPC to include grid-oriented flexibility objectives and constraints, integrating data communication with the DSO, and testing the system in simulated and real-time scenarios. This use case is built directly upon: Use Case 1: where the physical prototype with data communication and sensor infrastructure was developed. Use Case 2: where an MPC system was deployed to control heating, cooling, and energy use in the building.
	 Now, Use Case 3 introduces external grid signals from the DSO as part of the control logic and aims to co-optimize internal goals (comfort, energy efficiency) and external grid services (flexibility, demand response). <i>Methodology and Step-by-Step Implementation:</i> Review and Extension of Existing MPC Use the validated MPC framework from Use Case 2. Identify integration points for flexibility logic. When: At the beginning of Use Case 3

Why: To ensure consistency with previous control design and reuse existing architecture

2. Modeling of Flexibility

- a) Thermal Mass:
 - It includes heat retention in walls, floors and air.
 - Add constraints for allowable temperature deviations.
- b) Battery Storage: Model SOC, power limits, charge/discharge efficiency, and operational constraints.

When: After MPC review and baseline confirmation Why: To represent building thermal mass and battery dynamics within the control system

3. Communication with DSO

- Define the format and structure of DSO flexibility signals (e.g., power limits, time windows).
- Implement secure and real-time data links using standard protocols. When: After flexibility modeling is defined

Why: To enable the MPC to receive and respond to DSO flexibility requests in real time

4. MPC Reformulation

- Extend cost function: include terms for tracking DSO-requested power profile.
- Introduce flexibility as a controllable resource.
- Add slack variables and comfort penalty mechanisms (if it is necessary).

When: Once data link and models are ready

Why: To incorporate grid-response objectives and constraints into the controller

5. Forecast Integration

- Use solar radiation, occupancy, and internal heat gain predictions.
- Align forecast horizons with control intervals.

When: Parallel with MPC reformulation

Why: To allow the MPC to make predictive decisions using solar, occupancy, and DSO forecasts

6. Simulation and Validation

- Test the system in virtual scenarios using synthetic DSO signals.
- Evaluate how well the MPC balances internal and external goals. When: After the reformulated MPC is complete

Why: To test and verify the MPC behavior in synthetic and real-world flexibility scenarios

7. Hardware Deployment

General Remarks

Negotiations with the DSO have not yet been finalized. They have had to be restarted due to the replacement of a consortium member and the framework for the relationship with the DSO may therefore change.

Primary Actor roles do not necessarily mean a separate team member. This is currently being clarified.

Diagrams of the UC

Control Engineer	Modeling Expert	Analyst Pro	ject Manager	Prototype MPC	Communication	n Interface	DSO system	Evaluation Report
			S	step 1: Real-Time Tunir	g and Testing			
Definition of Te	est Strategy est Cases							
Initiate simulatio				DSO test req	uest (Under discussion)	DSO test request (Unde	er discussion)	
Provide real-tir	me data							
Adjust paramete	ers	1	1					
			S	tep 2: Flexibility Respo	nse Evaluation			
		Collect r Generat	eerformance dat e evaluation su Submit	ta mmary : report				
				Step 3: Docume	ntation			
			Compile	final documentation				
Control Engineer	Modeling Expert	Analyst Pro	ject Manager	Prototype MPC	Communication	n Interface	DSO system	Evaluation Report

Actor Name	Actor Type	Actor Description	Further Information Specific to this Use Case
Control Engineer	Human	Designs and updates the MPC logic to incorporate flexibility from thermal mass and battery systems.	Responsible for balancing internal objectives (comfort, efficiency) with external grid signals.
Modeling Expert	Human	Develops models for thermal dynamics and battery systems used in the predictive control logic.	Ensures that thermal mass and battery flexibility are accurately represented for control decision-making.
Data Analyst	Human	Tests and validates the performance of the integrated system.	Runs simulations and real- time tests to verify correct charger control behavior.
System Integrator	Human	Implements and deploys the MPC algorithm in the prototype hardware system.	Connects sensors, actuators, and DSO communication infrastructure.
Project Manager	Human	Oversee the entire use case workflow, including coordination, milestones, and reporting.	Coordinates integration between control team, DSO, and testing stakeholders.

MPC Controller	Software Module	Compute optimal control decisions using system models, forecasts, and DSO inputs.	Optimizes power flows, temperature setpoints, and battery usage based on system constraints and grid signals.
Communication Interface	System Component	The middleware or gateway enabling real- time data exchange with the DSO.	Translates and transmits signals between the MPC and external grid operator using standard protocols.
Distribution System Operator (DSO)	External System	Sends flexibility requests and schedules to the building system.	Communicates constraints, load reduction signals, or tariffs via the established data link.
Evaluation Report	Document	Summary document for the scenario	This document summarizes the conceptual, implementation, and testing plans for the scenario, as well as the testing and tuning results.

Step-by-step analysis of use case

Overview of scenarios

Scenario Conditions									
No	Scenario Title	Scenario Description	Primary Actor	Triggering Event	Pre-condition	Post-condition			
1	System Integration and Flexibility Setup	This scenario covers the integration of new flexibility resources into the existing MPC framework and establishing communication with the DSO. The aim is to prepare the system for real- time flexibility operation by enhancing models, communication links, and control structures.	Control Engineer, Modeling Expert, System Integrator, Data Analyst	Start of Use Case 3	Validated MPC system from Use Case 2 is available.	An extended MPC system capable of receiving DSO signals and managing flexibility resources in simulation environments.			
2	Real-Time System Testing and Performance Evaluation for Flexibility	This scenario involves the deployment of the flexibility- enabled MPC on the prototype system, real-time testing using live or emulated DSO signals, tuning of the controller parameters, and performance	System Integrator, Test Engineer, Analyst, Project Manager	Completion of system integration and simulation validation	Validated MPC performance in simulation; operational prototype platform	A real-time tested, tuned, and evaluated MPC system ready for flexibility service			

evaluation based on system behavior and flexibility delivery metrics.		provision under live conditions.
---	--	--

Scena	rio Name:	System Integration and Flexibility Setup						
Step No.	Event	Name of Process/ Activity	Description of Process/Activity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Informatio n Exchanged	Require ments (R-ID)
1.1.1	MPC Model Analysis	MPC model analysis for flexibility	ME analyzes the MPC model for potential flexibility extension.	Control Design Review	Modeling Expert (ME)	Control Engineer (CE)	Preliminary MPC model insights	R-ID-01
1.1.2	Review of Existing MPC	Review existing MPC	CE reviews the existing MPC system for integration readiness.	Control Design Review	Control Engineer (CE)	System Integrator (SI)	Validated MPC structure	R-ID-01
1.1.3	Architect ure validatio n	Validate MPC architect ure	SI validates and confirms the baseline MPC architecture.	Control Design Review	System Integrator (SI)	MPC System	Baseline configurati on confirmati on	R-ID-01
1.2.1	Flexibility Model Delivery	Provide modified MPC model with extended cost function	ME provides updated MPC model, including flexibility logic and cost function extensions.	Modeli ng Service	Modeling Expert (ME)	Control Engineer (CE)	Extended MPC model	R-ID-02
1.2.2	Model Integratio n	Integrate flexibility models	CE integrates the flexibility models into the MPC system.	Modeli ng Service	Control Engineer (CE)	MPC System	Thermal/B attery flexibility model data	R-ID-02
1.3.1	Comm Protocol Impleme ntation	Impleme nt DSO communi cation protocol	SI implements the real-time DSO communication protocol into the interface.	Comm unicati on Service	System Integrator (SI)	Communic ation Interface (CI)	Protocol implement ation data	R-ID-03
1.3.2	Comm Format Confirma tion	Confirm data format & setup	CI confirms the communication format and system integration setup.	Comm unicati on Service	Communic ation Interface (CI)	Control Engineer (CE)	Protocol configurati on confirmati on	R-ID-03

1.4.1	Test Case Definition	Definition of test cases	ME defines the simulation test cases required for flexibility evaluation.	Simulat ion Service	Modeling Expert (ME)	Control Engineer (CE)	Test case definitions	R-ID-04
1.4.2	Simulatio n Initiation	Initiate simulatio n	CE initiates MPC simulation based on test cases.	Simulat ion Service	Control Engineer (CE)	MPC System	Simulation start signal	R-ID-04
1.4.3	DSO Test Request	DSO test request (Under discussio n)	DO sends a flexibility test request (preliminary phase).	DSO Reques t Service	DSO System (DO)	Communic ation Interface (CI)	DSO test request	R-ID-04
1.4.4	Forward DSO Request	DSO test request (Under discussio n)	CI forwards DSO test request to MPC.	Comm unicati on Service	Communic ation Interface (CI)	MPC System	DSO test request relay	R-ID-04
1.4.5	Simulatio n Respons e	Send simulate d response	MPC sends the simulation result to the Control Engineer.	MPC Respon se Service	MPC System	Control Engineer (CE)	Simulated flexibility response	R-ID-04

Scena	rio Name:	Real-Time System Testing and Performance Evaluation for Flexibility						
Step No.	Event	Name of Process/ Activity	Description of Process/Activity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Informatio n Exchanged	Require ments (R-ID)
2.1.1	Test Strategy Definition	Definition of Test Strategy	ME defines the testing approach for evaluating real-time system behavior.	Testing Service	Modeling Expert (ME)	Control Engineer (CE)	Test strategy plan	R-ID-05
2.1.2	Test Case Definition	Definition of Test Cases	ME provides detailed test cases for flexibility testing.	Testing Service	Modeling Expert (ME)	Control Engineer (CE)	Test cases	R-ID-05
2.1.3	Simulatio n Initiation	Initiate simulatio n	CE initiates simulation on the prototype MPC.	Testing Service	Control Engineer (CE)	Prototype MPC	Simulation trigger	R-ID-05
2.1.4	DSO Test Request	DSO test request (Under discussio n)	DSO sends test flexibility request to the system.	DSO Reques t Service	DSO System (DO)	Communic ation Interface (CI)	DSO flexibility request	R-ID-05
2.1.5	Forward DSO Request	DSO test request (Under discussio n)	CI forwards the DSO flexibility request to the MPC system.	Comm unicati on Service	Communic ation Interface (CI)	Prototype MPC	Forwarded DSO test request	R-ID-05

2.1.6	Real- Time Data	Provide real-time data	MPC provides live data during testing to CE.	Testing Service	Prototype MPC	Control Engineer (CE)	Live performan ce data	R-ID-05
	Provision					. ,		
2.1.7	Paramet	Adjust	CE adjusts MPC	Testing	Control	Prototype	Updated	R-ID-05
	er Tuning	paramete	parameters based	Service	Engineer	MPC	parameters	
		rs	on testing		(ČE)			
			observations.					
2.2.1	Data	Collect	Analyst collects	Evaluat	Analyst	Prototype	Operationa	R-ID-06
	Collectio	performa	output data from	ion	(AN)	MPC	l data	
	n	nce data	MPC operation.	Service				
2.2.2	Evaluatio	Generate	Analyst compiles	Evaluat	Analyst	Evaluation	Performan	R-ID-06
	n	evaluatio	and analyzes the	ion	(AN)	Report	ce	
	Summary	n	test performance	Service			summary	
		summary	results.					
2.2.3	Submit	Submit	Evaluation report is	Evaluat	Evaluation	Project	Evaluation	R-ID-06
	Report	report	submitted to the	ion	Report	Manager	results	
			Project Manager.	Service		(PM)		
2.3.1	Final	Compile	Project Manager	Docum	Project	Evaluation	Final	R-ID-7
	Documen	final	prepares and	entatio	Manager	Report	documenta	
	tation	documen	finalizes the	n	(PM)		tion	
		tation	documentation	Service				
			package.					

3.4.4. UC – HU 4: Integration of Electric Vehicle Charger into the MPC Framework

Description of the Use Case

Use case Identification					
ID	Title	Domain			
HU4	Integration of Electric Vehicle Charger into the MPC Framework	Smart Electric Mobility			

Version Management								
Version No	Date	Name of authors	Changes					
01	15.04.2025	Péter Grabner (Profigram)						
02	04.05.2025	Péter Grabner	Corrections to clarify the use case. Revision and simplification of roles. Improvement of process transparency.					

Classification Information				
Pilot Involved	Hungarian Pilot led by Profigram,			
Relation to Other Use Cases	 UC – HU 1: Setting up and testing the system to be deployed UC – HU 2: Control system design and construction UC – HU 3: Integration of Flexibility into MPC and Interaction with DSO 			
Related Innovative SEEDS solutions	Microgrid controller for PV production, storage and consumption of the VRV, for optimal operation and maximizing RES			
Assets of the UC	PV, storage, EV charger, MPC			

	Scope and Objectives of Use Case
Scope of the use case	This use case involves the integration of an EV charger model into the building's control framework. The EV charger will be treated as an additional controllable load, and its operation will be optimized together with existing building elements such as thermal mass, battery storage, and PV generation. The control algorithm will ensure that the vehicle is charged according to the user's needs while maximizing cost efficiency, minimizing grid stress, and responding to DSO flexibility signals.
Objectives of the use case	 Model the EV charging process, including battery size, charging rate, and user-defined departure times. Integrate EV charging into the MPC optimization problem. Coordinate EV charging with other flexible assets (thermal mass, battery, PV). Respect grid constraints and respond to DSO signals during charging periods. Ensure the vehicle meets the desired state of charge (SOC) by departure time.
Limitations & Assumptions	 Limitations: Limited data availability for real-time EV user behavior and arrival/departure schedules. Nonlinear battery charging characteristics may require simplification. Grid signals may conflict with mobility requirements. Additional computational load for real-time optimization. Assuming only one EV is present; scaling to multiple vehicles not addressed here. Assumptions: EV availability and user requirements (arrival time, departure time, desired SOC) are known. The charger and its power limits are compatible with the control system. Communication with the EV charger is reliable and timely. Forecast data and flexibility signals are integrated as in previous use cases. Cost signals (e.g., time-of-use tariffs) are known in advance.

	e Case
Short DescriptionThis use case extends the existing Mo incorporating an electric vehicle (EV) system will optimize EV charging sch battery storage, thermal flexibility, PV goal is to manage charging in a way th energy cost reduction, and user-define	odel Predictive Control (MPC) framework by charging station into the control model. The nedules in coordination with building loads, production, and DSO flexibility requests. The nat balances grid support, self-consumption, ed mobility requirements.
Complete DescriptionMethodology and Step-by-Step Implem 1. EV Charger Modeling: Define charging power limits constraints based on user dep generation and electricity prici When: At the beginning of Use Why: To understand the charginic 2. Integration into MPC: Add EV charging as a control cost, comfort, and flexibility of When: After charger modeling Why: To allow predictive op framework3. Simulation and Testing: Validate controller logic in simulation and Testing: Validate controller logic in simulation and for 	entation: 5, SOC dynamics, and efficiency. Include arture time and minimum required SOC, PV ng Case 4 ng power profile and system limitations input and SOC as a state variable. Include opectives. is complete otimization of charging within the MPC ulation. Tune for performance under varying recast setup controller before real-time deployment ware. Monitor performance, adapt tuning, uccessful erformance with real energy and mobility ering: uning settings I-time deployment enable replication, and prepare for potential

Expected Results: The MPC system successfully integrates the EV charger into the existing control framework, enabling real-time scheduling of charging sessions in coordination with building loads, PV generation, battery storage, and thermal flexibility.

General Remarks

Primary Actor roles do not necessarily mean a separate team member. This is currently being clarified.

Diagrams of the UC

	Prototy		Communication Interface	EV Charger DSO system	Forecast Database	Evaluation Report
Control Engineer Modeling Expert Ana	lyst Project Manager					
		Step 1: Real-Time Tun	ing and Testing			
Definition of Test Strategy						
Definition of Tort Career						
Initiate simulation		- - -				
			DSO test req	uest (Under discussion)		
		SO test request (Und	er discussion)			
				Charging request		
		Charging request				
Provide real-time data						
Adjust parameters						
		Step 2: EV Charg	er Testing			
	Collect conformation data					
	Generate evaluation summary					
	Submit Report					
		Step 3: Docum	entation			
	Compile final docu	mentation				
Control Engineer Modeling Expert Ana	Prototy	ype MPC	Communication Interface	EV Charger DSO system	Forecast Database	Evaluation Report
+ $+$ $-$	+ $+$					
	\land \land					

Actor Name	Actor Type	Actor Description	Further Information Specific to this Use Case
Control Engineer	Human	Designs and extends the MPC logic to incorporate EV charging.	Ensures data exchange between the charger, control algorithm, and DSO interfaces.
Modeling Expert	Human	Develops MPC model modification for EV charging process	Responsible for formulating the optimization problem with EV SOC, timing, and energy costs in mind.
Data Analyst	Human	Tests and validates the performance of the integrated system.	Runs simulations and real- time tests to verify correct charger control behavior.
Project Manager	Human	Coordinates the integration and deployment phases.	Oversees technical milestones, documentation, and inter- team collaboration.

EV Charger	System Resource	Electric vehicle supply equipment (EVSE) executing the charging schedule.	Acted upon by the control system to follow optimized charging profiles.
MPC Controller	Software Module	Computes optimal control actions based on constraints, costs, and forecasts.	Integrates EV charging with other controllable systems while satisfying user needs.
Communication interface	Software Module	The middleware or gateway enabling real-time data exchange with the DSO.	Translates and transmits signals between the MPC and external grid operator using standard protocols.
DSO (Distribution System Operator)	External System	May provide flexibility signals or time-of-use tariff information.	Sends signals that may influence the timing and rate of EV charging.
Forecast Database	Forecast DatabaseSoftware ModuleThis database stores external data used by MPC.		Various car charging scenarios are required for testing purposes. These scenarios are stored here.
Evaluation Report	Document	Summary document for the scenario	This document summarizes the conceptual, implementation, and testing plans for the scenario, as well as the testing and tuning results.

Step-by-step analysis of use case

Overview of scenarios

Sce	Scenario Conditions								
No	Scenario Title	Scenario Description	Primary Actor	Triggering Event	Pre-condition	Post-condition			
1.	EV Charger Integration and MPC Extension	This scenario focuses on the process of incorporating the EV charger into the existing MPC framework, including the modeling of EV charger characteristics and the extension of the optimization problem to include charging schedules.			A well- functioning MPC system capable of processing DSO requests	MPC system with added EV charging management			
2.	Real-Time EV Charging Control and Performance Evaluation	After integrating the EV charger into the MPC system, this scenario focuses on real- time testing, performance evaluation, and adjustments to ensure that the charging process works efficiently under varying grid and user conditions.			MPC system with added EV charging management	A tested and properly functioning MPC system that efficiently manages the power requirements of EV charger under various assumptions.			

Scena	rio Name:	EV Charger Integration and MPC Extension						
Step No.	Event	Name of Process/ Activity	Description of Process/Activity	Service	Information Producer (Actor)	Informatio n Receiver (Actor)	Informatio n Exchanged	Requ irem ents (R- ID)
1.1.1	EV Charger Modeling	Modeling EV Charging Behavior	ME defines EV charging dynamics including power limits, SOC, efficiency, and timing constraints.	Modelin g Service	Modeling Expert (ME)	Modeling Expert (ME)	EV Charging Model	R-ID- 01
1.1.2	Model Analysis	MPC model analysis for EV Charging extension	ME shares insights on how to extend MPC with EV charger model.	Modelin g Service	Modeling Expert (ME)	Control Engineer (CE)	Extended modeling requiremen ts	R-ID- 01

1.1.3	Review of Existing MPC	Review existing MPC	CE reviews the current MPC model for compatibility with EV	Control Design Review	Control Engineer (CE)	System Integrator (SI)	Review results	R-ID- 01
1.1.4	Validate MPC Architect ure	Validate MPC architect ure	SI validates the existing MPC implementation for EV compatibility.	Deploy ment Service	System Integrator (SI)	MPC System	Validated MPC architectur e	R-ID- 01
1.1.5	Validate EV Charger	Validate EV Charger architect ure	SI validates the EV charger integration with the control framework.	Deploy ment Service	System Integrator (SI)	EV Charger	Validated charger configurati on	R-ID- 01
1.2.1	MPC Model Delivery	Provide modified MPC model with extended cost function	ME delivers an MPC model extended with EV cost and flexibility logic.	MPC Extensio n Service	Modeling Expert (ME)	Control Engineer (CE)	Modified MPC model	R-ID- 02
1.2.2	MPC Update	Integrate EV Charging extension	CE integrates EV charging into MPC logic and control flow.	MPC Extensio n Service	Control Engineer (CE)	MPC System	EV control variables and constraints	R-ID- 02
1.2.3	EV Logic Update	Integrate EV Charging extension	CE updates the EV Charger with MPC- compatible control logic.	MPC Extensio n Service	Control Engineer (CE)	EV Charger	Control signals and logic	R-ID- 02
1.3.1	Define Test Cases	Definition of test cases	ME defines test cases to validate the EV charging control logic.	Simulati on Service	Modeling Expert (ME)	Control Engineer (CE)	EV test cases	R-ID- 03
1.3.2	Forecast Integratio n	Integrate EV Charging extension for test	CE integrates forecast and user schedule data for testing.	Forecas ting Service	Control Engineer (CE)	Forecast Database (FD)	User schedule and forecast	R-ID- 03
1.3.3	Start Simulatio n	Initiate simulatio n	CE initiates a simulation with the integrated EV model.	Simulati on Service	Control Engineer (CE)	MPC System	Simulation trigger	R-ID- 03
1.3.4	DSO Request	DSO test request (Under discussio n)	DSO sends test flexibility signal to the system.	DSO Request Service	DSO System (DO)	Communic ation Interface (CI)	DSO test signal	R-ID- 03
1.3.5	Forward DSO Request	DSO test request (Under	CI forwards the DSO request to the MPC system.	Commu nication Service	Communica tion Interface (CI)	MPC System	Forwarded DSO test signal	R-ID- 03

		discussio						
		n)						
1.3.6	EV	Charging	Forecast system	Forecas	Forecast	EV Charger	Charging	R-ID-
	Charging	request	requests EV charging	ting	Database		command	03
	Request		based on forecasted	Service	(FD)			
			usage.					
1.3.7	EV-MPC	Charging	EV charger	Control	EV Charger	MPC	Charging	R-ID-
	Communi	request	communicates	Data		System	status	03
	cation		charging request to	Exchang				
			MPC.	е				
1.3.8	Simulatio	Send	MPC provides	MPC	MPC	Control	Simulation	R-ID-
	n	simulate	simulated response to	Respon	System	Engineer	result	03
	Respons	d	CE.	se		(CE)		
	е	response		Service				

Scena	rio Name:	Real-Time EV Charging Control and Performance Evaluation						
Step No.	Event	Name of Process/ Activity	Description of Process/Activity	Service	Information Producer (Actor)	Informatio n Receiver (Actor)	Informatio n Exchanged	Requ irem ents (R- ID)
2.1.1	Test Strategy Definition	Definition of Test Strategy	ME defines the testing approach for evaluating real-time EV charging behavior.	Testing Service	Modeling Expert (ME)	Control Engineer (CE)	Test strategy plan	R-ID- 04
2.1.2	Test Case Definition	Definition of Test Cases	ME provides detailed test cases for EV charging control evaluation.	Testing Service	Modeling Expert (ME)	Control Engineer (CE)	Test cases	R-ID- 04
2.1.3	Charging Schedule Update	Updating charging schedule s	CE updates the EV charging schedules using forecast and user input.	Forecas ting Service	Control Engineer (CE)	Forecast Database (FD)	Updated charging schedule	R-ID- 04
2.1.4	Simulatio n Initiation	Initiate simulatio n	CE initiates simulation on the prototype MPC with updated schedules.	Testing Service	Control Engineer (CE)	Prototype MPC	Simulation trigger	R-ID- 04
2.1.5	DSO Test Request	DSO test request (Under discussio n)	DSO sends a test flexibility signal to the system.	DSO Request Service	DSO System (DO)	Communic ation Interface (CI)	DSO flexibility request	R-ID- 04
2.1.6	Forward DSO Request	DSO test request (Under	CI forwards the DSO flexibility request to the MPC system.	Commu nication Service	Communica tion Interface (CI)	Prototype MPC	Forwarded DSO test request	R-ID- 04

		discussio n)						
2.1.7	EV Charging Request	Charging request	Forecast system sends a charging command to the EV charger.	Forecas ting Service	Forecast Database (FD)	EV Charger	Charging command	R-ID- 04
2.1.8	EV-MPC Communi cation	Charging request	EV charger communicates charging request to MPC.	Control Data Exchang e	EV Charger	Prototype MPC	Charging status	R-ID- 04
2.1.9	Real- Time Data Provision	Provide real-time data	MPC provides live data during testing to CE.	Testing Service	Prototype MPC	Control Engineer (CE)	Live performanc e data	R-ID- 04
2.1.1 0	Paramete r Tuning	Adjust paramete rs	CE adjusts MPC parameters based on testing observations.	Testing Service	Control Engineer (CE)	Prototype MPC	Updated parameters	R-ID- 04
2.2.1	Data Collectio n	Collect performa nce data	Analyst collects output data from MPC operation.	Evaluati on Service	Analyst (AN)	Prototype MPC	Operational data	R-ID- 05
2.2.2	Evaluatio n Summary	Generate evaluatio n summary	Analyst compiles and analyzes the test performance results.	Evaluati on Service	Analyst (AN)	Evaluation Report	Performanc e summary	R-ID- 05
2.2.3	Submit Report	Submit report	Evaluation report is submitted to the Project Manager.	Evaluati on Service	Evaluation Report	Project Manager (PM)	Evaluation results	R-ID- 05
2.3.1	Final Documen tation	Compile final documen tation	Project Manager prepares and finalizes the documentation package.	Docume ntation Service	Project Manager (PM)	Evaluation Report	Final documenta tion	R-ID- 06

3.5. USE CASES OF SLOVENIAN PILOT (SL)

3.5.1.UC - SL 1: Capturing of telemetry data

Description of the Use Case

Use case Identification					
ID	Title	Domain			
SL1	Capturing of telemetry data	Data Management, Visualization			

Version Management							
Version No	Date	Name of authors	Changes				
01	11.11.2024	Erik Gramc (Petrol)	First proposal of use case				
02	01.04.25	Tsompanidou Eleni (CERTH)	Review				

Classification Information						
Pilot Involved	Slovenian pilot, led by Petrol with support by JSI and ELCE					
Relation to Other Use Cases	 UC – SL 2: Providing flexibility services 					
Related Innovative SEEDS solutions	 Digital platform connecting BMS and real-time electricity prices Data quality assurance mechanism 					
Assets of the UC	Five gas stations owned and operated by Petrol; each including electrified devices, sensor and communication equipment, modeling and optimization algorithms running on a dedicated server and a decision support system.					

Scope and Objectives of Use Case								
Scope of the use case	The scope of the use case refers to the capture of data from devices on pilo facilities, as part of the input data for the implementation of the real-time adaptability service.							
Objectives of the use case	 Develop collectors for data collection Develop an agent for entering data into the database Implement the solution on a Slovenian pilot 							

	Verify the credibility and reliability of the data collection
Limitations &	Reliable real-time data capture requires a stable network, otherwise the data
Assumptions	may arrive in the system with a delay.

	Narrative of Use Case
Short Description	The Collector Module connects to the source, collects signal configurations from the Petrol agent, subscribes to signals, and uses a listener to add real- time data to an internal queue.
Complete Description	The Collector Module and Petrol IoT Agent work collaboratively to ensure the smooth collection, validation, and storage of real-time signal data in a timeseries database. Collector Module Workflow: Upon startup, the Collector module establishes a connection to the source and initiates a managed subscription (for OPC data collection). A Data Change Listener is added to track real-time signal updates. The module collects signal configurations for the source from the Petrol agent and subscribes to signals as needed. Any changes in signal data are captured by the listener, which adds them to an internal queue within the Collector module. A scheduled cron job processes the internal queue periodically, sending batches of signal data to the Petrol IoT Agent. This approach optimizes resource usage and ensures efficient data transmission. Petrol IoT Agent Workflow: The agent receives data from the Collector module via HTTP requests. Before processing, the agent validates the data by checking whether the module and its signals are active and correctly configured. After validation, the agent adds the received data to its internal queue. To prevent flooding the EventHub topic, the agent processes the queue in batches, sending multiple data entries in a
	single message. Once the data is sent to EventHub, an adapter service consumes the messages and inserts them into a timeseries database for long-term storage and analysis.
	Interaction Between Collector Module and Petrol IoT Agent: The Collector module ensures the continuous and reliable collection of signal data from the source. It serves as the initial source of truth for signal updates, which it sends to the Petrol IoT Agent. The Petrol IoT Agent acts as the intermediary, validating and batching the data from multiple modules (like the Collector) before transmitting it to EventHub for centralized processing and storage. Both services work together to ensure efficient data flow, prevent system overloads, and support functionalities like historical data retrieval. This integrated approach ensures real-time monitoring, efficient resource

utilization, and scalable data management for IoT systems in the energy
sector.

Diagrams of the UC

Sequence diagram of the use case

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
Data Collector Module	Software	Collectssignalconfigurationandsignal data.	N/A
IoT Agent	Software	Validates the data.	N/A
IoT Platform	Software	User Interface	N/A
Adapter service	Software	Reads data from Eventhub and writes them to DB	N/A
EventHub	Software	Streaming engine	N/A

Step-by-step analysis of use case

Overview of scenarios

Scena	Scenario Conditions									
No	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post- Condition				
S01	Data capture	Providing telemetry data for flexibility service	Prosumer	DSO sends the prosumer request for electricity flexibility	DSO and prosumer are connected with the SEEDS FSS; SEEDS FSS is operational; DSO and prosumer have an active contract for flexibility services.	None				

Steps per scenario

Scenario Name S01 -			01 – "Data capture"					
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirem ents, R-ID
St1	Request for reading a new signal	Reading data	User defines a new signal	loT Platform Ul	IoT Platform	loT Platform	None	Operation al loT Platform
St2	Data Collector synchronize Configuratio	Configur ation synchroni zation	Configurati on synchroniz ation	Data Collecto r Module Service	Data Collector Module	Data Collector Module	None	Operation al Data Collector Module

	n of the Signal							
St3	Reading data	Reading data	Reading data	Data Collecto r Module Service	Data Collector Module	Data Collector Module	None	Operation al Data Collector Module
St4	Data validation	Data validation	Data validation	Petrol IoT Agent Service	Petrol IoT Agent	Petrol IoT Agent	None	Operation al Petrol IoT Agent
St5	Writing data to EventHub	Writing data	Writing data to EventHub	Petrol IoT Agent Service	Petrol IoT Agent	Petrol IoT Agent	None	Operation al Petrol IoT Agent
St6	Adapter Service reads data from Eventhub and write it to DB	Writing data to DB	Writing data to Timescale DB	Adapter Service	Adapter Service	Adapter Service	None	Operation al Adapter Service

3.5.2. UC – SL 2: Providing flexibility services

Description of the Use Case

Use case Identification						
ID	Title	Domain				
SL2	Providing flexibility services	DER, Flexibility Services				

Version Management								
Version No	Date	Name of authors	Changes					
01	02.9.2024	Bernard Ženko (JSI)	First proposal of use case					
02	01.04.2024	Eleni Tsompanidou (CERTH)	Review of the Use case					
03	04.04.2025	Bernard Ženko (JSI)	Final					

	Classification Information								
Pilot Involved	Slovenian pilot, led by Petrol with support by JSI and ELCE								
Relation to Other Use Cases	 UC – SL 1: Capturing of telemetry data Five gas stations owned and operated by Petrol; each including electrified devices, sensor and communication equipment, modeling and optimization algorithms running on a dedicated server and a decision support system. 								
Related Innovative SEEDS solutions	 Multi-criteria characterization models of micro energy sources Multi-objective optimization and aggregation for energy flexibility Decision support system for market bidding of electricity balancing services 								
Assets of the UC	Five gas stations owned and operated by Petrol; each including electrified devices, sensor and communication equipment, modeling and optimization algorithms running on a dedicated server and a decision support system.								

Scope and Objectives of Use Case									
Scope of the use case	The scope of this use case is analysis, optimization and real-time management of flexibility services.								
Objectives of the use case	 Deploy energy flexibility of buildings and enhance the stability of the electricity grid in connection with DSOs and TSOs. Develop a complete set of components for enabling flexibility services, including a decision support system for flexibility services market bidding. Provide insights to the market participants. 								
Limitations & Assumptions	The procedure for providing flexibility services to DSO is established, and suitable supporting services are being provided at DSO.								

	Narrative of Use Case
Short Description	In response to a flexibility request by a DSO or TSO, an analysis of energy flexibility potential of the available assets is made, followed by an optimization, which results in a selection of possible responses. The choice can be then made by a human operator or automatically. At implementation time (usually in 24 hours), the system takes care of adaptations that are necessary due to subsequent and real-time changes in the modelled environment.
Complete Description	In response to a flexibility request from a Distribution System Operator (DSO) or a Transmission System Operator (TSO), a comprehensive analysis is conducted to evaluate the energy flexibility potential of the available assets. This assessment considers various factors, including current energy consumption patterns, asset capabilities, and external conditions such as weather forecasts. The goal is to determine the extent to which energy demand or generation can be adjusted in a way that meets the operator's request. Following the analysis, an optimization process is performed to identify the most effective flexibility strategies. The optimization results in a selection of possible response options, each with different trade-offs and implications. Depending on the system design and operational preferences, the final choice
	of response can be made either by a human operator, who reviews the options and selects the most suitable one, or through an automated decision-making system that applies predefined algorithms and rules. At the implementation stage, which typically occurs within a 24-hour timeframe, the system ensures that necessary adaptations are made to account for subsequent changes in the modeled environment. These changes may arise from fluctuations in energy demand and supply or updated weather conditions.

Real-time adjustments are carried out using advanced control mechanisms, predictive analytics, and communication with relevant grid and market actors to ensure that the flexibility response remains effective and aligned with operational goals.

Diagrams of the UC

Actors			
Actor Name	Actor Type	Actor Description	Further information specific to this Use Case
Prosumer	Stakeholder	The end user that consumes and produces electricity	In case of the Slovenian pilot, Petrol will have the role of a prosumer
DSO	Stakeholder	The end user of electricity flexibility services, Distribution System Operator	In case of the Slovenian pilot, Elektro Celje will have the role of a DSO
SEEDS Flexibility Services System (SEEDS FSS)	System	The system that will enable aggregation of prosumer's flexibility capabilities and their offering to DSO	The system for electricity flexibility that will be developed in SEEDS
SEEDS Flexibility UI	(Sub-)System	The User Interface of the SEEDS FSS	-
Flexibility Core System	(Sub-)System	The Core System of the SEEDS FSS	-
Building(s)	(Sub-)System	One or more buildings that are integrated in the SEEDS FSS	-

Step-by-step analysis of use case

Overview of scenarios

Scen	Scenario Conditions										
Νο	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post- Condition					
S01	Request Flexibility	DSO sends the prosumer request for electricity flexibility	DSO	DSO needs flexibility in their distribution system within the next day	DSO and prosumer are connected with the SEEDS FSS; SEEDS FSS is operational; DSO and prosumer have an active contract for flexibility services	None					
S02	View Flexibility	Prosumer checks for flexibility requests and triggers their	Prosumer	Fixed time deadline (e.g., each day at 8h	Scenario S01 completed within a predefined time	None					

Scen	ario Conditions					
Νο	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post- Condition
	Request Evaluation	evaluation (according to criteria such as cost, price, risk,)		in the morning)	window (typically within this day)	
S03	Offer Flexibility	Based on the evaluation results from S02, prosumer's manager decides to make an offer or not	Prosumer	Fixed time deadline (e.g., each day at 11h in the morning)	Finished evaluation triggered in scenario S02	None
S04	View and Accept or Reject Flexibility Offer	The DSO's manager checks the prosumer's offer and decides to accept it or not	DSO	Fixed time deadline (e.g., each day at 12h)	Posted prosumer's offer from scenario S03	None
S05	Deliver Flexibility	If DSO accepts prosumer's offer, the offered flexibility is delivered	Prosumer	Fixed time trigger as specified in the prosumer's offer (and in line with DSO's request)	Accepted prosumer's offer by DSO	None
S06	View Flexibility Delivery Evaluation	Complete evaluation of the delivered flexibility is performed by the system (mostly for prosumer's information, DSO also performs a separate evaluation on their own)	DSO, Prosumer	Flexibility delivery from scenario S05 is completed	Flexibility delivery from scenario S05 is completed	None

Steps per scenario

Scena	rio Name	S01 – "Request Flexibility"							
Step No.	Event	Name Process/ Activity	of	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Informati on Receiver (Actor)	Information exchanged (IDs)	Requirements , R-ID
St1	Request	Request flexibility	for	DSO posts request for flexibility to the system	SEEDS FSS UI	DSO	SEEDS FSS	Parameters specifying flexibility request (time window, flexibility amount)	Established connection between DSO and SEEDS FSS

Scenario I	Name	S02 – "View Flexibility, Request Evaluation"								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Informatio n Producer (Actor)	Informatio n Receiver (Actor)	Information exchanged (IDs)	Requiremen ts, R-ID		
St1	Request	View request for flexibility	Prosumer views DSO's request for flexibility	SEEDS FSS UI	DSO	SEEDS FSS	Parameters specifying flexibility request (time window, flexibility amount)	Established connection between Prosumer and SEEDS FSS		
St2	Request	Request evaluatio n	Prosumer requests evaluation of DSO's request for flexibility	SEEDS FSS UI	DSO	SEEDS FSS	Trigger flexibility request evaluation (Boolean)	Established connection between Prosumer and SEEDS FSS		
St3	Respons e	Receive evaluatio n	Prosumer receives evaluation of DSO's request for flexibility	SEEDS FSS UI	SEEDS FSS	Prosumer	Parameters specifying one or more options for a flexibility offer (complete device schedules for each offer)	Established connection between Prosumer and SEEDS FSS		

Scenario Name		S03 – "Offer Flexibility"							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Informat ion Receiver (Actor)	Information exchanged (IDs)	Requirements , R-ID	
St1	Request	Offer flexibility	Prosumer decides to offer (or not) one of the evaluated flexibility options	SEEDS FSS UI	Prosumer	SEEDS FSS	Confirmation for one or zero flexibility offer options	Established connection between Prosumer and SEEDS FSS	

Scena	rio Name	S04 – "Vie	S04 – "View and Accept or Reject Flexibility Offer"							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Informat ion Receiver (Actor)	Information exchanged (IDs)	Requiremen ts, R-ID		
St1	Request	View flexibility offer	DSO views prosumer's flexibility offer	SEEDS FSS UI	Prosumer	DSO	Parameters specifying the flexibility offer (price,)	Established connection between DSO and SEEDS FSS		
St2	Request	Accept or not the flexibility offer	DSO decides to accept (or not) the flexibility offer	SEEDS FSS UI	DSO	SEEDS FSS	Decision on flexibility offer acceptance (Boolean)	Established connection between DSO and SEEDS FSS		

Scena	rio Name	S05 – "Deliver Flexibility"						
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Require ments, R- ID
St1	Request	Deliver flexibility	System delivers flexibility to the grid	SEEDS FSS UI	SEEDS FSS	SEEDS FSS	None	Operatio nal SEEDS FSS system

Scena	Scenario Name S06 – "View Flexibility Delivery Evaluation"							
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Information exchanged (IDs)	Requirem ents, R-ID
St1	Request	View flexibility delivery evaluation	DSO views flexibility delivery evaluation	SEEDS FSS UI	SEEDS FSS	DSO	Parameters of evaluation of the delivered flexibility (time profile)	Establishe d connectio n between DSO and SEEDS FSS
St2	Request	View flexibility delivery evaluation	Prosumer views flexibility delivery evaluation	SEEDS FSS UI	SEEDS FSS	Prosumer	Parameters of evaluation of the delivered flexibility (time profile)	Establishe d connectio n between Prosumer and SEEDS FSS

4. KPIS

4.1. KPIS RELATED TO ELECTRIFICATION SYSTEMS

4.1.1. Increase of RES power at demo site

PART A: KPI Profile						
KPI Name:	Increase of RES power demo site	at Type:	COR	E SUF	PORTING	
Description:	This KPI identifies the increase in renewable energy power after the installation of the innovative system on-site. It distinguishes between installed peak power capacity and actual energy generation, ensuring a more accurate representation of the system's impact.					
	PART B: K	PI Calculation				
Unit:	kWp, kWh	Baseline Es Required:	stimations	YES	NO	
KPI Formula:	RES Capacity increase [kWp] = RES Capacity after innovative system installation [kWp] - RES Capacity before the innovative system installation [kWp] Alternatively, RES Energy increase [kWh] = RES Energy after innovative system installation [kWh] - RES Energy before the innovative system installation [kWh]					
Recommended Data Sources:	Relevant data can be extracted from on-site monitoring systems installed at the demo-site					
Recommended time interval of KPI reporting:	Monthly; Annually	Recommended time interval for data monitoring:	Daily (for tracking), Monthly evaluation)	energy (for	generation capacity	

4.1.2. Renewable energy production

PART A: KPI Profile							
KPI Name:	Renewable ene	ergy	Туре:		CORE	SUF	PORTING
	production						
Description:	Renewable energy is produced from unlimited natural resources and can be used for electricity generation, heating and cooling as well as transportation. This KPI quantifies the energy produced on-site after the implementation of the innovative RES system, covering both electrical and thermal outputs.						
PART B: KPI Calculation							
Unit:	kWh/year	Base Requ	eline E ired:	stimati	ons	YES	NO
KPI Formula:	Electrical energy output Thermal energy output						
Recommended	Relevant data can be collected from energy meters and sensors installed						
Data Sources:	for both electrical and thermal energy monitoring on-site						
Recommended time interval of KPI reporting:	Monthly; Annually	Reco time for mon	ommended e interval data nitoring:	Daily;	Month	ly	

4.1.3. Energy demand reduction

PART A: KPI Profile						
KPI Name:	Energy demand reduction	Туре:	CORE	SUPPORTING		
Description:	The energy demand is the amount of energy required by the end users to meet their needs. This KPI quantifies the reduction in grid-based electrical energy demand reduction in the demo-site after the implementation of the innovative RES system.					
PART B: KPI Calculation						
Unit:	%	Baseline Estimations Required:		S NO		
KPI Formula:	$Energy demand reduction [\%] = (\frac{Energy demand before [kWh] - Energy demand after [kWh]}{Energy demand before [kWh]})x100$					
Recommended Data Sources:	Relevant data can be obtained from energy measurements on-site, energy simulations and database.					
Recommended time interval of KPI reporting:	Monthly; Annually	Recommended time interval for data monitoring:		ithly		

4.1.4. Increase of energy production from the innovative system compared to conventional RES systems

PART A: KPI Profile						
KPI Name:	Increase of renewabl	e Type:	CORE	SUPPORTING		
	energy productio	n				
	compared t	ο				
	conventional RE	S				
	systems					
	This KPI measures the p	percentage increa	ase in energy p	roduction after the		
	innovative RES system is implemented compared to the electrical energy					
Description:	produced by conventior	ial RES systems.	Conventional	RES systems refer		
· · · ·	to typical renewable ene	ergy installations	that lack the	innovative features		
	of the new system. The	formula can be	used for all typ	bes of energy (e.g.,		
	thermal, electrical, etc.)	depending on th	e system being	g evaluated.		
PART B: KPI Calculation						
	0/ D	I ²				
Unit:	% Ba	aseline E equired:	stimations	YES NO		
Unit:	% Bi	aseline E equired: $ction = \left(Energy \right)$	stimations In [kWh] – Ener	YES NO $rgy Con [kWh] _{x100}$		
Unit:	% Bincrease of energy products	aseline E equired: $ction = \left(\frac{Energy}{Energy}\right)$	stimations In [kWh] – Ener Energy Con [k	YESNO $rgy Con [kWh]$ $x100$		
Unit: KPI Formula:	% Bincrease of energy products	aseline E equired: $ction = \left(\frac{Energy}{2}\right)$	stimations In [kWh] – Ener Energy Con [k	YESNO $rgy Con [kWh]$ $x100$		
Unit: KPI Formula:	% Bind Reference of energy product Energy In = Energy product	aseline E equired: $ction = \left(\frac{Energy}{Energy}\right)$	stimations In [kWh] — Ener Energy Con [k RES system [kV	YES NO rgy Con [kWh] Wh] $x100wh$]		
Unit: KPI Formula:	% Bi Reference of energy product Energy In = Energy product Energy Con = Energy product	aseline E equired: $ction = \left(\frac{Energy}{Energy}\right)$ ion from innovative ction from convent	stimations In [kWh] – Ener Energy Con [k RES system [kW tional RES system	YES NO rgy Con [kWh] Wh] wh] m [kWh]		
Unit: KPI Formula:	% Bi R Increase of energy product Energy In = Energy product Energy Con = Energy product Relevant data can be ex	aseline E equired: $ction = \left(\frac{Energy}{equired}\right)^{2}$ ion from innovative $ction from convent ction from convent ctracted from on $	stimations In [kWh] – Ener Energy Con [k e RES system [kV tional RES system -site measure	YES NO $rgy Con [kWh] \\ Wh] \\ wh] \\ m [kWh] \\ ments, simulations$		
Unit: KPI Formula: Recommended Data Sources:	% Bank Relevant data can be example and database	aseline E equired: $ction = \left(\frac{Energy}{Energy}\right)$ ion from innovative ction from convent ktracted from on	stimations In [kWh] – Ener Energy Con [k e RES system [kV tional RES system -site measure	YESNO $rgy Con [kWh]$ $Wh]$ $x100$ Wh $m[kWh]$ ments, simulations		
Unit: KPI Formula: Recommended Data Sources: Recommended	% Back Reference of energy product Energy In = Energy product Energy Con = Energy product Relevant data can be exand database	aseline E equired: $ction = \left(\frac{Energy}{Energy}\right)^{2}$ ion from innovative $ction from convent ction from convent ctracted from on Recommended ctracted from from from from from from from from$	stimations In [kWh] – Ener Energy Con [k e RES system [kV tional RES system -site measure	YESNO $rgy Con [kWh]$ $Wh]$ $x100$ Wh] $m [kWh]$ ments, simulations		
Unit: KPI Formula: Recommended Data Sources: Recommended time interval of	% Band Relevant data can be example and database Relevant data can be example a database Relevant databa	aseline E equired: $ction = \left(\frac{Energy}{2}\right)^2$ ion from innovative $ction from convent ction from convent ctracted from on Recommended interval form cherval $	stimations In [kWh] – Ener Energy Con [k e RES system [kV tional RES system -site measure Daily; Monthl	YES NO rgy Con [kWh] Wh] m [kWh] ments, simulations		
Unit: KPI Formula: Recommended Data Sources: Recommended time interval of KPI reporting:	% Backle in the second secon	aselineEequired: $ction = \left(\frac{Energy}{d}\right)$ ion from innovative ction from convent ktracted from onRecommended timefordata	stimations In [kWh] – Ener Energy Con [k e RES system [kV tional RES system -site measure Daily; Monthl	YES NO $\frac{rgy Con [kWh]}{Wh}$ $x100$ Wh] m [kWh] ments, simulations y		

PART A: KPI Profile KPI Name: SUPPORTING GHG emissions reduction Type: CORE across the lifecycle Integration of renewables is one of the pillars of the EU targets to reduce GHG emissions and reach climate neutrality by 2050. This KPI computes **Description:** the difference between GHG emissions throughout the lifecycle of the innovative system and the GHG emissions of the conventional solutions. **PART B: KPI Calculation** % **Baseline Estimations** Unit: YES NO **Required:** $\frac{GHG\ Conv\ [kgCO2/year]\ -\ GHG\ In}{GHG\ Conv\ \left[\frac{kgCO2}{year}\right]}$ $GHG \ emission \ reduction \ [\%] =$ x100 **KPI Formula:** GHG conv = GHG emissions of the conventional system [kgCO₂/year] GHG In = GHG emissions of the innovative system $[kgCO_2/year]_{x100}$ Relevant data can be extracted from simulations and database. Note: CO₂ emission factors should be referenced from recognized public Recommended **Data Sources:** sources (e.g., IPCC, European Environment Agency, or national inventories) to ensure accuracy and transparency. Recommended Recommended time interval of interval time Once Once **KPI reporting:** for data monitoring:

4.1.5. GHG emissions reduction across the lifecycle

4.1.6. Carbon payback period

PART A: KPI Profile						
KPI Name:	Carbon payback peri	od Type:	COF	RE SUP	PORTING	
Description:	This KPI describes the required time for the project's renewable energy systems to payback the CO2 emissions released during the manufacturing phase.					
PART B: KPI Calculation						
Unit:	years	Baseline Required:	Estimations	YES	NO	
KPI Formula:	$Carbon \ payback \ period \ [years] = \frac{Initial \ CO2 \ emissions \ [kgCO2eq]}{Annual \ CO2 \ emissions \ savings \ [kgCO2eq/year]}$					
Recommended Data Sources:	Initial CO2 emissions include the embodied emissions and the emissions from manufacturing process					
Recommended time interval of KPI reporting:	Once	Recommende monitoring:	ed time interval	for data	Once	

4.1.7. Recyclability of the system

PART A: KPI Profile						
KPI Name:	Recyclability of the system	Туре:	COF	RE SUP	PORTING	
Description:	This KPI quantifies the degree of recyclability of the developed system. The more recyclable is the system the higher impact on the environment it has.					
	PART B: KI	PI Calculation				
Unit:	% B	Baseline Es Required:	stimations	YES	NO	
KPI Formula:	Recyclability of the system [%] = $\left(\frac{Components with potential of recyclability [kg, m^3, etc.]}{Total amount of components [kg, m^3, etc.]}\right) x100$					
Recommended	The components that can be recycled are expected to be assessed based					
Data Sources:	on the % of waste recycled.					
Recommended time interval of KPI reporting:	Once	Recommended time interval for data monitoring:	Once			

4.2. KPIS RELATED TO AUTOMATION SYSTEMS AND PLATFORMS

4.2.1. Energy Efficiency Improvements

	PART A	A: KPI	Profile				
KPI Name:	Energy Efficie	ency	Туре:	C	ORE	SUP	PORTING
	Improvements						
Description:	Tracks the reduction in energy use compared to baseline levels before the implementation of smart automation systems. This KPI demonstrates how efficiently the system uses energy after deployment while maintaining or improving performance across pilots. The comparison should ideally be made under similar operating conditions. Improvements contribute to cost savings, reduced environmental impact, and energy sustainability						
	PART B: I	(PI Ca	lculation				
Unit:	%	Base Requ	line Es iired:	timation	s N	/ES	NO
KPI Formula:	EnergyEfficiencyImp = BaselineEnergyCons Basel	rovem sumpt ineEn	ient(%) ion – Actual ergyConsum	Energy(option	Consu	mptio	$\frac{n}{2}$ × 100
Recommended	Relevant data can be o	obtain	ed from on	i-site en	ergy	meas	urements,
Data Sources:	historical consumption re	cords	, energy simu	lations a	and da	atabas	e records.
Recommended time interval of KPI reporting:	Monthly; Annually	Rec time for mor	ommended e interval data nitoring:	Daily; N	1onthl	y	

4.2.2. Increased system flexibility for energy players

	PART A	: KPI Profile				
KPI Name:	Increased system flexibi	lity Type:	CORE	SUPPORTING		
Description:	This KPI evaluates the increased flexibility of the energy system facilitated by the SEEDS project's advancements in smart building automation and renewable energy integration. It assesses the system's ability to adapt to demand fluctuations, integrate renewable energy sources (RES), reduce congestion, and maintain power balance in terms of load, cost, and energy efficiency. Flexibility is measured as the capacity to modulate power and optimize energy utilization across buildings and grids, emphasizing stability (voltage and frequency control) and demand-side participation.					
	PART B: K	PI Calculation				
Unit:	Percentage (%) or W/€ (alternatively)	Baseline Es Required:	stimations Y	/ES NO		
KPI Formula:	$\Delta SF = \frac{SystemFlexibility - SystemFlexibilitybaseline}{Peak} \times 100$ • SF: Flexibility under SEEDS-enabled technologies (e.g., RES integration, automation systems) • SF Baseline: Baseline flexibility (before SEEDS project implementation). • Peak: Peak load capacity involved in demand-side management. (alternatively) It can also be expressed related to cost as: $SFAC = \frac{Systemflexibility}{Cost}$					
Recommended Data Sources:	Relevant data can be obtained from on-site energy management systems, demand response platforms, grid operator records, smart meters and database records.					
Recommended time interval of KPI reporting:	Monthly; Annually	Recommended time interval for data monitoring:	Daily; Monthly	ý		

4.2.3. Platform Downtime

PART A: KPI Profile						
KPI Name:	Platform Downtime	Туре:	COF	RE SUP	PORTING	
Description:	automation system is unavailable, preventing it from fulfilling its core functions (data collection, control, monitoring, etc.). This KPI measures both unplanned downtime (e.g., power outages, server failures) and planned downtime (e.g., updates, system reboots) across all SEEDS platforms and systems. For SEEDS, minimizing downtime is essential to ensure seamless operation of the smart building systems and continuous data collection for real-time energy management. Monitoring downtime helps to ensure the stability and reliability of the system, which is critical for effective energy automation, grid integration, and renewable energy usage					
	PART B: P	(PI Calculation				
Unit:	Percentage (%) or Time (hours)	Baseline Es Required:	stimations	YES	NO	
KPI Formula:	$Downtime = \frac{T}{Totaltin}$	TotalTimeofCIPu neofCIPoperation	ıavailabilit ı(hours∨d	y aysetc.)	× 100	
Recommended Data Sources:	Relevant data can be ob tools, server uptime recor	Relevant data can be obtained from system logs, network monitoring tools, server uptime records, maintenance reports, and database records.				
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:	Annually			

4.2.4. ICT Response Time

	PART	A: KPI	Profile				
KPI Name:	ICT Response Time		Туре:	CC	DRE	SUP	PORTING
Description:	Captures the speed of the ICT system's response to transactions and data exchanges. It reflects system efficiency and readiness, which is critical for real-time operations and data processing in automation systems.						
	PART B:	KPI Ca	alculation				
Unit:	ms/byte; sec/byte, min/byte (depends on the system)	Base Requ	line E ired:	stimation	S Y	ΈS	NO
KPI Formula:	ICTres	ponse	$time = \frac{Trar}{r}$	isactionti payload	me		
Recommended Data Sources:	Relevant data can be ob monitoring tools, server r logs.	Relevant data can be obtained from system logs, network performance monitoring tools, server response time records, and database transaction logs.					
Recommended time interval of KPI reporting:	Once	Reco time for mon	ommended interval data itoring:	Once			

4.2.5. Improved Interoperability

	PART	A: KPI Profile					
KPI Name:	Improved Interoperability	/ Type:	COR	E SUF	PORTING		
Description:	This KPI assesses the ability of systems to interact seamlessly, exchange data, and work collaboratively. This includes syntactic (communication) and semantic (understanding exchanged data) interoperability, as well as cross-domain interactions						
	PART B:	KPI Calculation					
Unit:	Number / Likert Scale (1–5)	Baseline E Required:	stimations	YES	NO		
KPI Formula:	5	ikert Scale asses. 1: Not at all 2: Poor 3: Fair 4: Good Excellent interop	sment: erability				
Recommended Data Sources:	Survey, interviews	Survey, interviews					
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:	Annually				

4.2.6. Quality of Open Data

PART A: KPI Profile							
KPI Name:	Quality of Open Data	Type: CORE SUPPORTING					
Description:	to DCAT (Data Catalog Vocabulary) standards for data that are shared openly. The DCAT standard facilitates interoperability and accessibility between different data catalogs, ensuring that data can be easily discovered, shared, and reused across systems. By adhering to DCAT, the quality of open data is improved, and data becomes more transparent, interoperable, and reusable. This is crucial for the SEEDS project as it ensures data is consistently structured and accessible for integration into various platforms, especially in the context of smart grids and energy management systems.						
	PART B: KF	PI Calculation					
Unit:	% B	aseline E equired:	stimations	YES	NO		
KPI Formula:	Quality of Open Data = $\frac{N}{N}$	<i>umber of Datas</i> Total Num	sets Adhering ber of Datase	<i>to DCA</i> ts	$\frac{T}{-}$ × 100		
Recommended Data Sources:	Relevant data can be obtain validation tools, compliance	Relevant data can be obtained from metadata repositories, data catalog validation tools, compliance reports, and database records.					
Recommended time interval of KPI reporting:	Once F t f	Recommended ime interval or data nonitoring:	Once				

4.2.7. Cost Reduction from Flexibility

PART A: KPI Profile						
KPI Name:	Cost Reduction fr Flexibility	rom 1	Гуре:	COF	RE SUP	PORTING
Description:	This KPI measures the cost savings generated by increased flexibility in the energy system, facilitated by automation. It evaluates how the system adapts to demand fluctuations, integrates renewable energy, and reduces energy costs by shifting consumption to off-peak periods or optimizing energy sources					
	PART B: I	KPI Ca	lculation			
Unit:	Percentage (%) or € saved	Baseli Requir	ne Est red:	imations	YES	NO
KPI Formula:	Cost Reduction from F = $\frac{\text{Savin}}{1}$	Flexibi gs in C	lity Cost due to Fl Total Co	lexibility7 ost	'otal Cos	ts — × 100
Recommended Data Sources:	Relevant data can be or response platform report and database records.	Relevant data can be obtained from energy billing records, demand response platform reports, market price data, automation system logs, and database records.				
Recommended time interval of KPI reporting:	Monthly; Annually	Recon time for monit	mmended interval data toring:	Daily; Mon	thly; Ann	ually

4.2.8. System Efficiency

PART A: KPI Profile							
KPI Name:	System Efficiency Type: CORE SUPPORTING						
Description:	This KPI measures how efficiently the automation system converts energy nput into useful energy output. It tracks the system's ability to minimize energy waste and optimize energy use across smart grids, buildings, or other automated systems						
	PART B: K	(PI Calculation					
Unit:	Percentage (%)	Baseline Es Required:	stimatio	ons _Y	′ES	NO	
KPI Formula:	 System Ef Energy Output: The usa system. Energy Input: The total 	ficiency = $\frac{\text{Energy}}{\text{Energ}}$ able energy or optimisenergy used by the	y Outpu y Input nized ene system.	t - × 100 ergy deliv	rered b	y the	
Recommended Data Sources:	Relevant data can be c management platforms, records.	Relevant data can be obtained from on-site energy meters, energy management platforms, performance monitoring tools, and database records.					
Recommended time interval of KPI reporting:	Once	Recommended time interval for data monitoring:	Once				

4.2.9. Automation System Reliability

	PART A	: KPI Profile					
KPI Name:	Automation Syst Reliability	em Type:	COR	E SUP	PORTING		
Description:	This KPI measures the oper the percentage of time th interruptions, ensuring smoo	his KPI measures the operational reliability of the automation system. It tracks he percentage of time the system is fully operational without failures or nterruptions, ensuring smooth performance of critical energy management tasks					
	PART B: P	(PI Calculation					
Unit:	Percentage (%)	Baseline E Required:	stimations	YES	NO		
KPI Formula:	 Reliability Total Operational Tim failure. Total Time Available: operational. 	$v = \frac{\text{Total Operatio}}{\text{Total Time Av}}$ ne: The time the system the total time the system of total time the system of total time the total time the system of total time the total time the total time time the system of total time the system of total time time the system of total time total time time time total time time time time time time time time	nal Time vailable stem was oper system was in	00 ational v tended t	vithout o be		
Recommended Data Sources:	Relevant data can be obtain uptime records, maintenanc	ed from system log e reports, and datal	gs, performand base records.	ce monit	oring tools,		
Recommended time interval of KPI reporting:	Once	Recommended time interval for data monitoring:	Once				

4.2.10. Number of Connected Devices or Systems

	PART A	A: KPI Profile				
KPI Name:	Number of Connec	ted Type:	COR	RE SUP	PORTING	
	Devices or Systems					
Descriptions	This KPI measures the pe the connectors provided	ercentage of devic by the ICT platf	es or systen orm. A high	ns that a her value	re utilizing indicates	
Description:	greater interoperability, as it suggests a larger number of devices systems are integrated with the platform					
PART B: KPI Calculation						
Unit:	Percentage(%)	Baseline E Required:	stimations	YES	NO	
	Connected Devices or Systems					
KDI Formula	_ Numb	Number of devices/systems utilizing the ICT platform				
KFTFUIIIuid.		Total number	of devices/s	ystems		
	× 100					
Recommended	Relevant data can be ol	otained from sys	tem integra	tion logs	s, network	
Data Sources:	monitoring tools, device r	nanagement syst	ems, and da	tabase r	ecords.	
Recommended		Recommended				
time interval of	Once	time interval	Once			
KPI reporting:		for data				
		monitoring:				

4.2.11. API Response Time

PART A: KPI Profile							
KPI Name:	API Response Time	Туре:	COR	E SUP	PORTING		
Description:	This KPI measures the time it takes for the API to respond to client requests. A faster response time indicates better API performance, contributing to an improved user experience and efficient system operation.						
	PART B: K	PI Calculation					
Unit:	Milliseconds (ms)	Baseline Es Required:	timations	YES	NO		
KPI Formula:	AF Time When Respons ○ Time When Request is Ser by the client. ○ Time When Response is Re receives a response from t	PI Response Time se is Received-Tin nt: The exact timesta eceived: The exact t the API.	(ms)= ne When Rec amp when the imestamp wh	quest is S API call i ben the cli	Sent is initiated ent		
Recommended Data Sources:	Relevant data can be ol monitoring tools, network records.	Relevant data can be obtained from API logs, server response time monitoring tools, network performance tracking systems, and database records.					
Recommended time interval of KPI reporting:	Once	Recommended time interval for data monitoring:	Once				

4.2.12. Semantic Accuracy

	PART	A: KPI Profile						
KPI Name:	Semantic Accuracy	Semantic Accuracy Type: CORE SUPPORTING						
Description:	This KPI measures the accurately reflect the ac model. Higher accuracy across systems.	his KPI measures the degree to which the semantic representations ccurately reflect the actual data and relationships they are intended to nodel. Higher accuracy ensures better interoperability and usability cross systems.						
	PART B:	KPI Calculation						
Unit:	Number / Likert Scale (1–5)	Baseline E Required:	stimations	YES	NO			
KPI Formula:	5:	1: Not at all 2: Poor 3: Fair 4: Good Excellent interope	erability					
Recommended Data Sources:	Relevant data can be of consistency checks, inte surveys.	btained from data properability testir	a validation ng results, a	reports, and user	semantic feedback			
Recommended time interval of KPI reporting:	Once	Recommended time interval for data monitoring:	Once					

4.2.13. Scalability in Connected Devices

PART A: KPI Profile									
KPI Name:	Scalability in Connected D	evices	Туре:	CORE	SUF	PORTING			
Description:	This KPI measures the system's capacity to integrate and manage an increasing number of connected devices without performance degradation. A higher scalability score (in percentage) indicates that the system can handle more devices and scale effectively, while a lower score suggests that the system is nearing its maximum capacity.								
PART B: KPI Calculation									
Unit:	%	Baseline Required:	Estimat	ions	/ES	NO			
KPI Formula:	Scalability Sc Current Device Count: 1 system. System's Maximum Ca system is designed to h	ore = <u>Cur</u> System The number pacity: The handle witho	rent Devide Cou 'sMaximum Ca of devices C maximum nu out performa	unt pacity × 2 urrently c umber of nce degr	100 conne devic adatic	cted to the es the on.			
Recommended Data Sources:	Relevant data can be obtai device management logs, records.	ined from sy , network lo	ystem perfor bad balancin	mance n g reports	nonito s, and	oring tools, database			
Recommended time interval of KPI reporting:	Once	Recomme for data m	nded time onitoring:	interval	Onc	e			

4.2.14. Task Completion Accuracy

PART A: KPI Profile								
KPI Name:	Task Completion Accurac	y Type:	COR	E SUP	PORTING			
Description:	Measures how accurately the ICT system completes assigned tasks without human intervention or error. A bigger number may indicate greater system reliability							
PART B: KPI Calculation								
Unit:	% Base	line Estimations	Required:	YES	NO			
KPI Formula:	 Accuracy = Correctly completed tasks Total Assigned Tasks × 100 Correctly Completed Tasks: The number of tasks that the ICT system has successfully completed without errors or the need for human intervention. Total Assigned Tasks: The total number of tasks that the system was assigned to complete in a given period, regardless of whether they were completed 							
Recommended	Relevant data can be obta	ained from task	management	t system	ns, system			
Data Sources:	logs, performance monito	ring tools, and da	atabase recor	rds.				
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:	Annually					

4.2.15. User Satisfaction with Automation Systems

PART A: KPI Profile								
KPI Name:	User Satisfaction w	with	Туре:		CORE	SUP	PORTING	
	Automation Systems							
	This KPI measures the	satis	faction level	of end	d-users	intera	cting with	
	automation systems. It	evalu	uates severa	l aspe	cts of ı	user e	xperience,	
Description:	including ease of use, sy	stem	ı reliability, ar	nd pero	ceived v	alue.	The higher	
	the score, the greater the user satisfaction with the system's functionality							
efficiency, and the overall experience.								
	PART B:	KPI C	alculation					
Unit	Likert Scale (1–5)	Base	eline Es	stimati	ions ,	VES	NO	
onnt.		Requ	uired:			IL3	NO	
	Likert Scale:							
	1: Very dissatisfied							
KPI Formula	2: Dissatisfied							
Ri I I Officia.	3: Neutral							
	4: Satisfied							
			5: Very satist	fied				
Recommended	Relevant data can be	obtai	ned from us	ser su	rveys, f	eedba	ck forms,	
Data Sources:	customer support logs, a	nd us	sability testing	g resul	ts.			
Recommended		Rec	ommended					
time interval of	Annually	time	e interval	Annu	allv			
KPI reporting:	, and any	for	data	,	any			
		mor	nitoring:					

4.3. KPIS RELATED TO SMART BUILDING SERVICES

4.3.1. Total Operational Cost per m² per Year

PART A: KPI Profile									
KPI Name:	Total Operational Cost	per 「	Туре:		CORE SUP		PORTING		
	m² per Year								
	Measures the yearly cost to operate the HVAC system and electrical								
Description:	appliances in a building. It is essential for assessing the financial								
	efficiency of the building's	s oper	ration.						
	PART B: P	VPI Ca	alculation						
l Init:	€/m²/year	Basel	line E	stimati	ions	VES	NO		
onit.		Requi	ired:			TL3	NO		
	Total Operational Cost	= <u>Sum</u>	of all operatio	onal cost	s for all	HVAC eq	uipment		
KPI Formula:	Total floor area of the building								
	Delevent data can be a	htaina	ad from an	aray h	illo m	inton			
Recommended	Relevant data can be o		ed from en	ergy b	mis, m		ance logs,		
Data Sources:	equipment usage records	S, HV/ 40) ror	AC System I	nonito	oring to	ois, an	a building		
Decemberded	management system (biv	13) Tep	JUILS.						
Recommended		Reco	ommenaea						
time interval of	Annually	time	interval	Dailv					
KPI reporting:		for	data	. ,					
		moni	itoring:						

4.3.2. Annual CO2 Emissions

PART A: KPI Profile									
KPI Name:	Annual CO2 Emissions	Туре:	CORE	E SUPPORTING					
Description:	Measures the total yearly CO2 emissions from the operation of the HVAC system. It helps evaluate the environmental impact of building operations.								
PART B: KPI Calculation									
Unit:	kg CO2/ m²/year	Baseline Es Required:	stimations	YES	NO				
KPI Formula:	Total Annual CO2 Emissions per m2 = $\frac{Energy use (kWh) * CO2 emission factor (kg CO2/kWh)}{Total floor area of the building}$								
Recommended Data Sources:	Relevant data can be ob emission factor database system (BMS) reports.	tained from ener es, HVAC system l	gy consumpt ogs, and build	ion rec ling ma	ords, CO2 inagement				
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:	Daily						

4.3.3. Annual Primary Energy Use per m²

PART A: KPI Profile								
KPI Name:	Annual Primary Energy l per m ²	Jse Type:	CORE	E SUP	PPORTING			
Description:	Measures the total primary energy use needed for heating and cooling. It reflects the building's energy efficiency							
PART B: KPI Calculation								
Unit:	kWh/m²/year	Baseline E Required:	stimations	YES	NO			
KPI Formula:	Annual Primary Energy	Use per $m^2 = \frac{1}{Tc}$	Total energy tal floor are	v used b a of the	y HVAC e building			
Recommended Data Sources:	Relevant data can be o monitoring tools, ene management system (BM	obtained from e rgy manageme IS) reports.	nergy meter nt systems	s, HVA , and	C system building			
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:	Continuous (15min), a monthly, ye	r ggregat arly	nonitoring ted daily,			

4.3.4. Annual Electricity Use per m²

PART A: KPI Profile									
KPI Name:	Annual Electricity Use per	r m²	Туре:	COR	E SUP	PORTING			
Description:	Measures total electricity use of the building over a year, including all energy needs for heating and cooling, crucial for estimating operational costs and sustainability impact								
PART B: KPI Calculation									
Unit:	kWh/m²	Base Requ	eline E uired:	stimations	YES	NO			
KPI Formula:	Annual Electricity Use per $m^2 = \frac{\text{Total electricity used by HVAC}}{\text{Total floor area of the building}}$								
Recommended Data Sources:	Relevant data can be consumption records, H management system (BN	e ob HVAC MS) re	otained from System m eports.	n energy r onitoring to	neters, ools, and	electricity J building			
Recommended time interval of KPI reporting:	Annually	Rec time for mor	commended e interval data nitoring:	Continuous (15min), monthly, ye	s r aggregat early	nonitoring ted daily,			

4.3.5. Peak Electricity Demand per m²

	PART A	A: KPI Profile							
KPI Name:	Peak Electricity Demand m ²	per Type :	CORE	E SUPPORTIN					
Description:	Measures the maximum electricity use per unit area during the peak usage period. Important for evaluating the building's power capacity and load management								
PART B: KPI Calculation									
Unit:	kW/m²	Baseline E Required:	Estimations	YES	NO				
KPI Formula:	Peak Electricity Dema	$nd = rac{Maximum is}{Total f}$	nstantaneous loor area of t	electri he buil	city use ding				
Recommended Data Sources:	Relevant data can be ob systems, building man forecasting tools.	otained from pov agement syster	wer meters, e m (BMS) re	nergy r ports,	nonitoring and load				
Recommended time interval of KPI reporting:	Monthly; Annually	Recommended time interval for data monitoring:	Monthly						

4.3.6. Annual Heating Demand per m²

PART A: KPI Profile								
KPI Name:	Annual Heating Demand m ²	per Type:	COR	E SUF	PORTING			
Description:	The total amount of thermal energy required by the building over a given period, essential for assessing energy consumption and operational costs.							
PART B: KPI Calculation								
Unit:	kWh/m²	Baseline E Required:	stimations	YES	NO			
KPI Formula:	Annual Heating Det $= \frac{Tc}{T}$	mand per m2 otal thermal ener Total floor a	gy supplied rea of the bi	by the H uilding	IVAC			
Recommended Data Sources:	Relevant data can be ob meters, building manag consumption records for	tained from HVA gement system heating.	C system log (BMS) repo	gs, thern orts, ar	nal energy nd energy			
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:	Continuous (15min), a monthly, ye	aggrega arly	monitoring ted daily,			

4.3.7. Peak Heating Demand per m²

PART A: KPI Profile									
KPI Name:	Peak Heating Demand m ²	per Ty	r Type: C		CORE SUF		PPORTING		
Description:	Represents the highest heating demand per unit area during the coldest period, critical for sizing HVAC systems								
PART B: KPI Calculation									
Unit:	kW/m²	Baseline Require	e E: d:	stimati	ions	YES	NO		
KPI Formula:	Peak Heating Dem	and $=$	Maxii Total floc	mum h or area	eating of the	load buildi	ng		
Recommended Data Sources:	Relevant data can be ob temperature sensors, bu energy monitoring system	Relevant data can be obtained from HVAC system load measurements, temperature sensors, building management system (BMS) reports, and energy monitoring systems during the coldest periods							
Recommended time interval of KPI reporting:	Monthly; Annually	Recom time for monito	mended interval data ring:	Conti	nuous r	nonito	ring		

4.3.8. Annual Cooling Demand per m²

PART A: KPI Profile									
KPI Name:	Annual Cooling Demand	Annual Cooling Demand per Type:			COR	E SUP	PORTING		
Description:	The total amount of cooling energy required by the building over a given period, essential for assessing energy consumption and operational costs								
PART B: KPI Calculation									
Unit:	kWh/m²	Baseli Requi	ine Es red:	stimati	ons	YES	NO		
KPI Formula:	Annual Cooling Dem =	Annual Cooling Demand per m2 $= \frac{Total thermal energy extracted by the HVAC}{Total floor area of the building}$							
Recommended Data Sources:	Relevant data can be obt temperature sensors, bui energy monitoring system	Relevant data can be obtained from HVAC system load measurements, temperature sensors, building management system (BMS) reports, and energy monitoring systems for cooling operations.							
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:Continuous mon (15min), aggregated monthly, yearly				monitoring ted daily,			

4.3.9. Peak Cooling Demand per m²

PART A: KPI Profile									
KPI Name:	Peak Cooling Demand m ²	per Type:		CORE	PORTING				
Description:	Tracks the highest cooling demand per unit area during the hottest period, useful for evaluating cooling system performance and capacity								
PART B: KPI Calculation									
Unit:	kW/m²	Baseline Required:	Estimat	ions	/ES	NO			
KPI Formula:	Peak Cooling De	emand $\frac{1}{Tota}$	Maximum co l floor area	ooling lo of the b	ad uildin	\overline{ag}			
Recommended Data Sources:	Data for peak cooling der energy consumption me and HVAC system perfor	mand can be ters, buildin mance repo	e sourced fro g managem rts.	om temp ent syst	eratur em (E	e sensors, BMS) logs,			
Recommended time interval of KPI reporting:	Monthly	Recomment time interfor for monitoring	nded erval data :	inuous m	nonito	ring			

4.3.10. Yearly Thermal Discomfort

PART A: KPI Profile								
KPI Name:	Yearly Thermal Discomfo	Yearly Thermal Discomfort Type: CORE SUPPORTIN						
Description:	Indicates the number of degree-hours during which the indoor temperature exceeds or falls below the comfort range. It is a measure of occupant comfort.							
PART B: KPI Calculation								
Unit:	Kh/year (degree-hours per year)	Baseline E Required:	stimations	YES	NO			
KPI Formula:	Thermal Discomfort = $\sum_{X \mid T}$	t] (Hours outside co emperature devic	omfort range ation from co	omfort z	zone			
Recommended Data Sources:	Indoor temperature sense weather data for outdo applicable).	Indoor temperature sensors, building management system (BMS) logs, weather data for outdoor temperatures, and occupant feedback (if applicable).						
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:	Kh/year (o year)	degree-h	iours per			

4.3.11. Indoor Air Quality (CO₂ Concentration)

PART A: KPI Profile							
KPI Name:	Indoor Air Quality (Concentration)	CO ₂	Туре:		CORE	SUP	PORTING
Description:	This KPI monitors the average concentration of CO ₂ in indoor spaces, serving as an indicator of air quality and ventilation effectiveness. Elevated CO ₂ levels can indicate poor ventilation, which may lead to discomfort, reduced productivity, or health concerns for occupants. By tracking CO ₂ concentration, this KPI helps ensure that indoor environments are safe, comfortable, and well-ventilated						
	PART B: P	KPI C	alculation				
Unit:	ppm (parts per million)	Base Requ	eline Es uired:	stimatio	ons \	/ES	NO
KPI Formula:	 Indoor Air Quality (C CO₂ concentrations (in ppm) in each in Number of zones: CO₂ levels. 	 Indoor Air Quality (CO₂) = ∑CO₂concentrations in each zone number of zones CO₂ concentrations in each zone: The measured CO₂ concentration (in ppm) in each individual zone within the monitored area. Number of zones: The total number of zones being monitored for 					
Recommended Data Sources:	CO ₂ sensors installed in management system (BM	n va 1S)d	rious zones ata.	within	the bu	uilding	, building
Recommended time interval of KPI reporting:	Monthly; Annually	Rec time for mo	commended e interval data nitoring:	Contin	nuous m	nonito	ring

4.4. KPIS RELATED TO SMART GRID SERVICES

4.4.1. Delivered Flexibility

PART A: KPI Profile							
KPI Name:	Delivered Flexibility	Delivered Flexibility Type: CORE SUPPORTIN					
Description:	Measures the amount of	flexibility energy	/ delivered d	uring the	e demand-		
Becomption	response/flexibility event	; it can be positiv	e or negative				
	PART B: I	KPI Calculation					
Unit	[kWh]	Baseline E	Estimations	VES	NO		
onn.		Required:		IL3	NO		
		$\int_{0}^{l_{DR},end}$					
	L	$= \int_{l_{pp}} (P_{dr} -$	P _{ref})at				
KPI Formula:	• P_{raf} is the consumed	power in the ref	erence scena	rio [kW]			
	• P_{dr} is the altered	d consumed i	oower durir	na the	demand-		
	response/flexibility e	vent [kW]		.ge			
Recommended	Energy management sys	stems (EMS), sn	nart meters,	demand	-response		
Data Sources:	systems, and grid integra	tion data.					
Recommended		Recommended					
time interval of	Monthly: Annually	time interval	Per event	, Daily;	Monthly;		
KPI reporting:	Montiny, Annually	for data	Annually				
		monitoring:					

4.4.2. Flexibility Factor

PART A: KPI Profile								
KPI Name:	Flexibility Factor	Flexibility Factor Type: CORE SUPPORT						
Decorintion:	compares the amount of	electricity consu	med when t	the price	s are high			
Description.	with the one when the pri	rith the one when the prices are low						
	PART B: I	KPI Calculation						
l Init:		Baseline E	stimations	VES	NO			
Onit.		Required:		TL3				
	$\sum (E_{el})$	$(t)c(t))_{low_price}$ -	$-\sum (E_{el}(t)c)$	t)) _{high_pr}	·ice			
	$F_{flexibility} = \frac{1}{\sum (E_{el}(t)c(t))_{low mice} + \sum (E_{el}(t)c(t))_{high mice}}$							
KPI Formula:		_ F		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	• E_{el} is the electricity	consumption at ti	me t [kWh]					
	• c is the electricity pr	ice at time t [any o	currency/kW	/h]				
Decemanded	Energy consumption dat	a (from smart me	eters or buil	lding ma	nagement			
Recommended	systems), electricity price	e data (from utility	y providers	or dynan	nic pricing			
Data Sources:	platforms), and demand-s	side management	systems.	-				
Recommended		Recommended	over the er	tira haat	ina			
time interval of	Monthly	time interval	over the er	illire neal	ing			
KPI reporting:	wonuny	for data	season					
		monitoring:						

4.4.3. Flexibility Index

PART A: KPI Profile								
KPI Name:	Flexibility Index	Туре:	CORE	SUPPORTING				
Description:	compares the penalty of	of a reference ca	ase with the	price-responsive				
Description.	controlled case							
	PART B: I	KPI Calculation						
Unit		Baseline E	stimations	VES NO				
onit.		Required:						
	$\sum penalty of$	price responsive	case \sum	$(E_{el}(t)c(t))_{flex}$				
	$\frac{\sum penalty of base case}{\sum penalty of base case} = 1 - \frac{\sum (E_{el}(t)c(t))_{ref}}{\sum (E_{el}(t)c(t))_{ref}}$							
KPI Formula.	• E_{el} is the electricity consumption at time t [kWh]							
	• c is the electricity prior	c is the electricity price at time t [any currency/kWh]						
	Electricity consumption d	ata (from smart n	neters or build	ling management				
Recommended	systems), electricity price	e data (from utilit	y providers o	r dynamic pricing				
Data Sources:	platforms), and demand	d-side managem	ent systems	for both price-				
	responsive and reference	cases.						
Recommended		Recommended						
time interval of	Appually	time interval	both short a	nd long torms				
KPI reporting:	Annually	for data	both sholl a					

4.4.4. Shifted Flexible Load

PART A: KPI Profile						
KPI Name:	Shifted flexible load	Туре:	CORE	SUPPORTING		
Description:	shows the amount of shifte case compared to a referen flexibilities	d electricity of a ce case for bot	a price-respons h downward ar	sive controlled nd upward		
	PART B: KF	I Calculation				
Unit:	Bi Ri	aseline E equired:	stimations	YES NO		
KPI Formula:	$S_{flex,downwa}$ $S_{flex,upwar}$ • $E_{el,ref}$ is the electricity co • $E_{el,flex}$ is the electricity c time t [kWh]KP	$a_{rd} = \frac{\sum \max (E_e)}{\sum \max (E_{el,j})}$ $a_d = \frac{\sum \max (E_{el,j})}{\sum \max (E_{el,j})}$ insumption of references on sumption of pre-	$\frac{1}{\sum} E_{el,ref}(t) - E_{el,fle}}{\sum} E_{el,ref}(t)}$ $\frac{\sum}{\sum} E_{el,ref}(t)}{\sum} E_{el,ref}(t)}$ erence case at tirrice-responsive of	(t),0) (t),0)ime t [kWh]controlled case at		
Recommended Data Sources:	Smart meter data or energy price-responsive controlled or control mechanisms that	gy consumption cases. Data fro manage the pr	n data for botl om demand-res ice-responsive	h reference and sponse systems adjustments.		
Recommended time interval of KPI reporting:	Annually; Monthly Recom interva monito	mended time I for data ring:	both short an	id long terms		

4.4.5. Self-consumption rate

PART A: KPI Profile							
KPI Name:	Self-consumption rate	Туре:	COR	E SUP	PORTING		
Description:	Shows the amount of dire	ectly used PV self	generation i	n the bui	ilding		
	PART B: F	(PI Calculation					
Unit:		Baseline Es Required:	stimations	YES	NO		
KPI Formula:	when $E_{PV} \neq 0$, • E_{el} is the electricity of • E_{PV} is the PV electric	when $E_{PV} \neq 0$, $SCR = \sum \frac{\min(E_{el}(t); E_{PV}(t))}{E_{PV}(t)}$ • E_{el} is the electricity consumption at time t [kWh]					
Recommended Data Sources:	Smart meter data for build Data from the photovolt production.	ding electricity co taic (PV) system	nsumption. monitoring	ı, detaili	ng energy		
Recommended time interval of KPI reporting:	Annually; Monthly	Recommended time interval for data monitoring:	short term				

4.4.6. Supply Cover Factor

	PART A: KPI Profile							
KPI Name:	supply cover factor Type: CORE SUPPORTIN							
Description:	the relation between the e	nergy produced o	n-site and di	irectly us	ed and the			
Description.	total on-site produced ene	ergy						
	PART B: P	(PI Calculation						
Unit:		Baseline E	stimations	YES	NO			
		Required:		. 20				
	when $P_{PV} \neq 0$, for all dt ,							
		(N J.				
	$\gamma = -\frac{\int \min(P_{PV}(t), P_{used}(t))dt}{\int \min(P_{PV}(t), P_{used}(t))dt}$							
KPI Formula:	I SI	$\int F$	$P_{PV}(t)dt$					
	P _{PV} is the PV electric	city production du	ring time int	erval dt	[kW]			
	• P_{used} is the power co	onsumption during	g time interv	al dt [kW	v]			
		-	-					
Recommended	Power consumption data	from building's el	ectrical sys	tems.				
Data Sources:	Photovoltaic (PV) system	monitoring data	for energy p	roductio	n.			
Recommended		Recommended						
time interval of	Manthly Annually	time interval	obort /long	tormo				
KPI reporting:	wonuniy; Annualiy	for data	short/long	terms				
		monitoring:						

4.4.7. Grid delivered factor

PART A: KPI Profile							
KPI Name:	Grid delivered factor	Grid delivered factor Type: CORE SUPPORTING					
Description:	the relation between the electricity used by the sys	the relation between the electricity delivered from the grid and the total electricity used by the system over a time period					
	PART B: I	KPI Calculation					
Unit:		Baseline E Required:	stimations	YES	NO		
KPI Formula:	when $P_{used} \neq 0$, for all dt_{i} $\gamma_{grid} =$ • E_{del} is the delivered e • E_{used} is the total elect • P_{PV} is the PV electric • P_{used} is the power co	$\frac{E_{del}}{E_{used}} = \frac{\int \max{(P_u)}}{P_u}$ electricity from the stricity used [kWh] ity production during nsumption during	$f_{used}(t) - P_{PV}$ $\int P_{used}(t)dt$ e grid [kWh] ing time interva	,(t),0)dt erval dt [l al dt [kW]	kW]]		
Recommended Data Sources:	Recommended data sou delivered energy data, an	urces include en d photovoltaic sys	ergy consu stem monito	mption of or ing data	data, grid- a.		
Recommended time interval of KPI reporting:	Annually	Recommended time interval for data monitoring:	short/long	terms			

4.4.8. Additional energy consumed

PART A: KPI Profile								
KPI Name:	Additional energy consur	Additional energy consumed Type: CORE SUPPORTING						
	the extra electricity impo	ort froi	m the grid in	a dema	nd-resp	onse	(DR)	
Description:	scenario with respect to	scenario with respect to the reference scenario						
	PART B:	KPI C	alculation					
Unit:	[kWh]	Base	eline E	Estimati	ons ,	YES	NO	
		Requ	uired:					
		Δ	$E = E_{import}^{dr}$	$-E_{impo}^{ref}$	ort			
KPI Formula:	-dr							
	• E_{import}^{ar} is the electricity imported from the grid in the DR scenario [kWh]							
	• E_{import}^{ref} is the electricity	impor	ted from the g	grid in the	e referen	ce sce	nario [kWh]	
Recommended	Recommended data so	urces	include ele	ctricity	import	data	from both	
Data Sources:	demand-response (DR) a	and re	ference sce	narios.				
Recommended		Rec	ommended					
time interval of	Monthly Annually time interval chart (long torma							
KPI reporting:		for	data	31010/	iong te	1113		
		mor	nitoring:					

4.4.9. Peak delivered

PART A: KPI Profile							
KPI Name:	Peak delivered	Туре:	Type: COF				
Description:	extreme power value of o	delivered electricit	у				
	PART B:	KPI Calculation					
Unit:	[kW]	Baseline E Required:	stimations	YES	NO		
KPI Formula:	$P_{del}^{max} = \max_{t}(P_{net}(t))$ • P_{net} is the net electricity $(P_{delivered} - P_{exported})$ [kW]						
Recommended	Recommended data sou	urces include net	electricity of	data (P_o	delivered)		
Data Sources:	over time.						
Recommended time interval of KPI reporting:	Monthly	Recommended time interval for data monitoring:	long terms	3			

4.4.10. Peak exported

PART A: KPI Profile								
KPI Name:	Peak exported	Туре:	CORI	E SUP	PORTING			
Description:	extreme power value of e	exported electricity						
	PART B:	KPI Calculation						
Unit:	kW	Baseline Estima Required:	tions	YES	NO			
KPI Formula:	P _{net} is the net ele	$P_{exp}^{max} = -\min_{t}(P_{net})$ ctricity ($P_{delivered} - P_{exp}$	t)) _{orted}) [I	(W]				
Recommended Data Sources:	Recommended data sources include net electricity data (P_exported) over time.							
Recommended time interval of KPI reporting:	Monthly	Recommended interval for data monit	time oring:	long te	erms			

4.4.11. Energy cost reduction due to flexibility delivery

	PART A	A: KPI Profile				
KPI Name:	Energy cost reduction due	e Type:		CORE	SUP	PORTING
	to flexibility delivery					
Decerintiens				 ما ما ان دم س د		
Description:		Auction due to hi	exidility	delivery		
	FART D. I	Resolino	Ectimat	ions		
Unit:	C	Required:	Lotimat		ſES	NO
KPI Formula:	$CR = \sum_{el,flex} (E_{el,flex}(t)c(t) - E_{el,flex}(t)b(t) + E_{el,flex}(t)p(t)) - \sum_{el,ref} E_{el,ref}(t)c(t)$ • $E_{el,ref}$ is the electricity consumption in a reference scenario at time t [kWh] • $E_{el,flex}$ is the electricity consumption in a flexibility delivery scenario at time t [kWh] • c is the electricity price at time t [EUR/kWh] • b bonus for delivering flexibility at time t [EUR/kWh] • p penalty for not delivering enough flexibility at time t [EUR/kWh] The formula above is just an example, because many cost computation schemas are possible, depending on specific contracts for flexibility services delivery.					
Recommended Data Sources:	electricity prices, bonus timestamps for flexibility	and penalty va	electric lues for events.	flexibili	ty del	ivery, and
Recommended time interval of KPI reporting:	commended ne interval of I reporting:Recommended time interval for monitoring:The complete time during which ele consumption was alt order to provide file service (prep flexibility delivery rebound periods); it c include many fle delivery events over a time period, not just a event.				e interval electricity altered in flexibility reparation, ry and t can also flexibility er a longer st a single	

4.4.12. Peak demand reduction factor

PART A: KPI Profile						
KPI Name:	Peak demand factor	Туре:	CORE	E SUP	PORTING	
Description:	Compares the peak demand of reference and the price-responsive controlled case					
	PART B: I	KPI Calculation				
Unit:		Baseline E Required:	stimations	YES	NO	
KPI Formula:	$PDF = \frac{(peak \ demand)_{flex} - (peak \ demand)_{ref}}{(peak \ demand)_{ref}}$					
Recommended Data Sources:	Recommended data sources include peak demand data for both the reference and price-responsive controlled cases, along with timestamps for each demand period.				both the mestamps	
Recommended time interval of KPI reporting:	Monthly	Recommended time interval for data monitoring:	short term			

5. CONCLUSION

In conclusion, Deliverable D3.2 outlines the comprehensive methodology that will be used to evaluate the SEEDS project's effectiveness in decarbonizing buildings and enhancing energy efficiency. The development of KPIs serves as a crucial tool for measuring the project's progress in four key areas: electrification systems, automation systems, smart building services, and smart grid services. These KPIs are tailored to the specific needs of each pilot site, ensuring that the solutions implemented are scalable, replicable, and aligned with SEEDS' overarching objectives.

The collaborative approach, involving partners from various work packages, was essential for defining and finalizing the use cases and KPIs. The structured methodology, including the use of a modified IEC 62559 standard for use cases, ensures consistency and clarity in assessing the project's impact.

In total, 19 use cases were analyzed, including those for the Belgium pilot (4 use cases), Danish pilot (3 use cases), Greek pilot (6 use cases), Hungarian pilot (4 use case), and Slovenian pilot (2 use cases). The integration of these KPIs and use cases into the pilot sites' assessments will not only track the success of the SEEDS interventions but also allow for real-time adjustments and improvements, fostering innovation in building decarbonization.

ANNEXES

KPI Responsible: Responsible for managing general data collection. The KPI responsible and the data provider may be the same partner

Data Providers: Which partner will collect the data.

Monitoring Interval: At what time interval the data can be provided (e.g., hourly, daily, monthly, yearly).

ANNEX 1 BELGIUM PILOT KPIS

	KPI name	KPI responsible	Data providers	Monitoring interval
	KPIs RELA	TED TO electrificatio	n systems	
1	Increase of RES power at demo site	maintenance company	Mintus/ Sweco	monthly
2	Renewable energy production	maintenance company	Mintus/ Builtwins	monthly
3	Energy demand reduction *only collective installations	Builtwins/ KUL	Mintus/ Builtwins	monthly
4	Increase of energy production from the innovative system compared to conventional RES systems	n/a	n/a	n/a
5	GHG emissions reduction across the lifecycle	n/a	n/a	n/a
6	Carbon payback period	n/a	n/a	n/a
7	Recyclability of the system	n/a	n/a	n/a
	KPIs related to	automation systems	and platforms	
8	Energy Efficiency Improvements	Builtwins/ KUL	Builtwins/ Mintus	monthly
9	Increased system flexibility for energy players	n/a	n/a	n/a
10	Platform Downtime	Builtwins	Builtwins/ Mintus	yearly
11	ICT Response Time	n/a	n/a	n/a
12	ICT Response Time	n/a	n/a	n/a
13	Quality of Open Data	n/a	n/a	n/a
14	Cost Reduction from Flexibility	n/a	n/a	n/a
15	System Efficiency	Builtwins / KUL	Builtwins/ Mintus	daily
16	Automation System Reliability	Builtwins	Builtwins/ Mintus	monthly
17	Number of Connected Devices or Systems	n/a	Builtwins/ Mintus	n/a

18	API Response Time	n/a	Builtwins	n/a
19	Semantic Accuracy	n/a	n/a	n/a
20	Scalability in Connected Devices	n/a	n/a	n/a
21	Task Completion Accuracy	Builtwins	Builtwins	monthly
22	User Satisfaction with	n/a	n/a	n/a
	Automation Systems			
	KPIs relat	ted to smart building	I services	
23	l otal Operational Cost per m² per	Builtwins	Builtwins	annual reporting
24	Annual CO2 Emissions	Builtwins	Builtwins	annual reporting
25	Annual Primary Energy Use per	Builtwins	Builtwins	annual reporting
	m²			
26	Annual Electricity Use per m ²	Builtwins	Builtwins	annual reporting
27	Peak Electricity Demand per m ²	Builtwins	Builtwins	annual reporting
28	Annual Heating Demand per m ²	n/a	n/a	n/a
29	Peak Heating Demand per m ²	n/a	n/a	n/a
30	Annual Cooling Demand per m ²	n/a	n/a	n/a
31	Peak Cooling Demand per m ²	n/a	n/a	n/a
32	Yearly Thermal Discomfort	Builtwins	Builtwins	annual reporting
33	Indoor Air Quality (CO ₂	n/a	n/a	n/a
	Concentration) (excl. Greek pilot)			
	KPIS RELAT	ED TO SMART GRIE	SERVICES	
34	Delivered flexibility	n/a	n/a	n/a
35	Flexibility factor	n/a	n/a	n/a
36	Flexibility index	n/a	n/a	n/a
37	Shifted flexible load	n/a	n/a	n/a
38	Self consumption rate	n/a	n/a	n/a
39	Supply cover factor	n/a	n/a	n/a
40	Grid delivered factor	n/a	n/a	n/a
41	Additional energy consumed	KUL	KUL	annual reporting*
42	Peak delivered	n/a	n/a	n/a
43	Peak exported	n/a	n/a	n/a
44	Energy cost reduction due to flexibility delivery	KUL	KUL	annual reporting*

*based on simulations, no measurements in the pilot

ANNEX 2 DANISH PILOT KPIS

	KPI name	KPI responsible	Data providers	Monitoring interval		
	KPIs RELA	TED TO electrificatio	n systems			
1	Increase of RES power at demo site	n/a	n/a	n/a		
2	Renewable energy production	n/a	n/a	n/a		
3	Energy demand reduction	n/a	n/a	n/a		
4	Increase of energy production from the innovative system compared to conventional RES systems	n/a	n/a	n/a		
5	GHG emissions reduction across the lifecycle	n/a	n/a	n/a		
6	Carbon payback period	n/a	n/a	n/a		
7	Recyclability of the system	n/a	n/a	n/a		
	KPIs related to	automation systems	and platforms			
8	Energy Efficiency Improvements			hourly		
9	Increased system flexibility for energy players	CDK	CDK			
10	Platform Downtime	n/a	n/a	n/a		
11	ICT Response Time	n/a	n/a	n/a		
12	ICT Response Time	n/a	n/a	n/a		
13	Quality of Open Data	n/a	n/a	n/a		
14	Cost Reduction from Flexibility	CDK	CDK	hourly		
15	System Efficiency	n/a	n/a	n/a		
16	Automation System Reliability	n/a	n/a	n/a		
17	Number of Connected Devices or Systems	n/a	n/a	n/a		
18	API Response Time	n/a	n/a	n/a		
19	Semantic Accuracy	n/a	n/a	n/a		
20	Scalability in Connected Devices	n/a	n/a	n/a		
21	Task Completion Accuracy	n/a	n/a	n/a		
22	User Satisfaction with Automation Systems	n/a	n/a	n/a		
	KPIs related to smart building services					
23	Total Operational Cost per m ² per Year	n/a	n/a	n/a		
24	Annual CO2 Emissions	CDK	CDK/ENFOR	hourly		
25	Annual Primary Energy Use per m ²	CDK	CDK	hourly		
26	Annual Electricity Use per m ²	CDK	CDK	hourly		
27	Peak Electricity Demand per m ²	CDK	CDK	hourly		

28	Annual Heating Demand per m ²	CDK	CDK	hourly
29	Peak Heating Demand per m ²	CDK	CDK	hourly
30	Annual Cooling Demand per m ²	CDK	CDK	hourly
31	Peak Cooling Demand per m ²	CDK	CDK	hourly
32	Yearly Thermal Discomfort	CDK	CDK	hourly
33	Indoor Air Quality (CO ₂	n/a	n/a	n/a
	Concentration) (excl. Greek pilot)			
	KPIS RELAT	ED TO SMART GRID	SERVICES	
34	Delivered flexibility	CDK	CDK	hourly
35	Flexibility factor			
36	Flexibility index	CDK	CDK	hourly
37	Shifted flexible load	CDK	CDK	hourly
38	Self consumption rate	CDK	CDK/AI-ENERGY	hourly
39	Supply cover factor	CDK	CDK/AI-ENERGY	hourly
40	Grid delivered factor	CDK	CDK/AI-ENERGY	hourly
41	Additional energy consumed	n/a	n/a	n/a
42	Peak delivered	n/a	n/a	n/a
43	Peak exported	n/a	n/a	n/a
44	Energy cost reduction due to	CDK	CDK/AI-ENERGY	hourly
	flexibility delivery			
45	Peak demand factor	n/a	n/a	n/a

ANNEX 3 GREEK PILOT KPIS

	KPI name	KPI responsible	Data providers	Monitoring
				Interval
1	KPIS RELA	I ED TO electrification	systems	
I	Increase of RES power at demo	עדווס	חדוום	monthly
2	Renewable energy production			monthly
<u></u> २	Energy demand reduction			monthly
<u> </u>	Increase of energy production			попапу
т	from the innovative system			
	compared to conventional RES			
	systems	DUTH	DUTH	monthly
5	GHG emissions reduction			
	across the lifecycle	DUTH	DUTH	monthly
6	Carbon payback period	DUTH	DUTH	monthly
7	Recyclability of the system	DUTH	DUTH	once
	KPIs related to	automation systems	and platforms	
8	Energy Efficiency	DUTH	DUTH	monthly
0	Improvements			doilu
9	energy players	DOTH	DUTH	dally
10	Platform Downtime	CERTH	CERTH	daily
11	ICT Response Time	CERTH	CERTH	daily
12	ICT Response Time	CERTH	CERTH	daily
13	Quality of Open Data	CERTH	CERTH	monthly
14	Cost Reduction from Flexibility	CERTH	CERTH	monthly
15	System Efficiency	CERTH	CERTH	monthly
16	Automation System Reliability	CERTH	CERTH	monthly
17	Number of Connected Devices	CERTH	CERTH	daily
	or Systems		0-0-1	1
18	API Response Time	CERTH	CERTH	daily
19	Semantic Accuracy	CERTH	CERTH	daily
20	Scalability in Connected Devices	CERTH	DUTH	monthly
21	Task Completion Accuracy	DUTH	DUTH	monthly
22	User Satisfaction with	DUTH	DUTH	monthly
	Automation Systems			
	KPIs relat	ed to smart building s	services	1
23	Total Operational Cost per m ²	DUTH	DUTH	yearly
24	per Year Appual CO2 Emissions			voarly
24 25	Annual CO2 Ennissions			yearly
23	m ²			yearry
	L	1	1	1

26	Annual Electricity Use per m ²	DUTH	DUTH	yearly
27	Peak Electricity Demand per m ²	DUTH	DUTH	yearly
28	Annual Heating Demand per m ²	DUTH	DUTH	yearly
29	Peak Heating Demand per m ²	DUTH	DUTH	yearly
30	Annual Cooling Demand per m ²	DUTH	DUTH	yearly
31	Peak Cooling Demand per m ²	DUTH	DUTH	yearly
32	Yearly Thermal Discomfort	DUTH	DUTH	yearly
33	Indoor Air Quality (CO ₂	DUTH	DUTH	yearly
	Concentration) (excl. Greek			
	pilot)			
	KPIS RELAT	ED TO SMART GRID	SERVICES	1
34	Delivered flexibility	CERTH	DUTH	
35	Flexibility factor	CERTH	DUTH	
36	Flexibility index	CERTH	DUTH	
37	Shifted flexible load	CERTH	DUTH	
38	Self consumption rate	CERTH	DUTH	daily
39	Supply cover factor	CERTH	DUTH	daily
40	Grid delivered factor	CERTH	DUTH	daily
41	Additional energy consumed	CERTH	DUTH	daily
42	Peak delivered	CERTH	DUTH	daily
43	Peak exported	CERTH	DUTH	daily
44	Energy cost reduction due to flexibility delivery	CERTH	DUTH	daily
45	Peak demand factor	CERTH	DUTH	daily

ANNEX 4 HUNGARIAN PILOT KPIS

	KPI name	KPI responsible	Data providers	Monitoring interval		
	KPIs RELA	TED TO electrification	systems	interitur		
1	Increase of RES power at demo site	HORBER	HORBER	yearly		
2	Renewable energy production	HORBER	HORBER	yearly		
3	Energy demand reduction	FairC	FairC	yearly		
4	Increase of energy production from the innovative system compared to conventional RES systems	HORBER	HORBER	yearly		
5	GHG emissions reduction across the lifecycle	ÉMI	ÉMI	once		
6	Carbon payback period	ÉMI	ÉMI	yearly		
7	Recyclability of the system	ÉMI	ÉMI	once		
	KPIs related to	automation systems	and platforms			
8	Energy Efficiency Improvements	Profigram	Profigram	yearly		
9	Increased system flexibility for energy players	Profigram	Profigram	yearly		
10	Platform Downtime	Profigram	Profigram	yearly		
11	ICT Response Time	Profigram	Profigram	yearly		
12	ICT Response Time	Profigram	Profigram	yearly		
13	Quality of Open Data	Profigram	Profigram	yearly		
14	Cost Reduction from Flexibility	Profigram	Profigram	yearly		
15	System Efficiency	Profigram	Profigram	yearly		
16	Automation System Reliability	Profigram	Profigram	yearly		
17	Number of Connected Devices or Systems	FairC	FairC	yearly		
18	API Response Time	Profigram	Profigram	once		
19	Semantic Accuracy	Profigram	Profigram	once		
20	Scalability in Connected Devices	Profigram	Profigram	yearly		
21	Task Completion Accuracy	Profigram	Profigram	yearly		
22	User Satisfaction with Automation Systems	Profigram	Profigram	yearly		
	KPIs related to smart building services					
23	Total Operational Cost per m ² per Year	FairC	BP16	yearly		
24	Annual CO2 Emissions	FairC	BP16	yearly		
25	Annual Primary Energy Use per m ²	FairC	BP16	yearly		
26	Annual Electricity Use per m ²	FairC	BP16	yearly		
27	Peak Electricity Demand per m ²	FairC	BP16	yearly		

	1	1		1
28	Annual Heating Demand per m ²	FairC	BP16	yearly
29	Peak Heating Demand per m ²	FairC	BP16	yearly
30	Annual Cooling Demand per m ²	FairC	BP16	yearly
31	Peak Cooling Demand per m ²	FairC	BP16	yearly
32	Yearly Thermal Discomfort	ÉMI	ÉMI	yearly
33	Indoor Air Quality (CO ₂	ÉMI	ÉMI	yearly
	Concentration) (excl. Greek pilot)			
	KPIS RELAT	ED TO SMART GRID	SERVICES	·
34	Delivered flexibility	Profigram	Profigram	yearly
35	Flexibility factor	Profigram	Profigram	yearly
36	Flexibility index	Profigram	Profigram	yearly
37	Shifted flexible load	Profigram	Profigram	yearly
38	Self consumption rate	Profigram	Profigram	yearly
39	Supply cover factor	Profigram	Profigram	yearly
40	Grid delivered factor	Profigram	Profigram	yearly
41	Additional energy consumed	Profigram	Profigram	yearly
42	Peak delivered	Profigram	Profigram	yearly
43	Peak exported	Profigram	Profigram	yearly
44	Energy cost reduction due to flexibility delivery	Profigram	Profigram	yearly
45	Peak demand factor	Profigram	Profigram	yearly

ANNEX 5 SLOVENIAN PILOT KPIS

	KPI name	KPI responsible	Data providers	Monitoring interval
	KPIs RELA	TED TO electrificatior	n systems	
1	Increase of RES power at demo site	n/a	n/a	n/a
2	Renewable energy production	n/a	n/a	n/a
3	Energy demand reduction	n/a	n/a	n/a
4	Increase of energy production from the innovative system compared to conventional RES systems	n/a	n/a	n/a
5	GHG emissions reduction across the lifecycle	n/a	n/a	n/a
6	Carbon payback period	n/a	n/a	n/a
7	Recyclability of the system	n/a	n/a	n/a
	KPIs related to	automation systems	and platforms	
8	Energy Efficiency Improvements	n/a	n/a	n/a
9	Increased system flexibility for energy players	n/a	n/a	n/a
10	Platform Downtime	JSI	PETROL	yearly
11	ICT Response Time	n/a	n/a	n/a
12	ICT Response Time	n/a	n/a	n/a
13	Quality of Open Data	n/a	n/a	n/a
14	Cost Reduction from Flexibility	n/a	n/a	n/a
15	System Efficiency	n/a	n/a	n/a
16	Automation System Reliability	JSI	PETROL	yearly
17	Number of Connected Devices or Systems	JSI	PETROL	yearly
18	API Response Time	JSI	PETROL	yearly
19	Semantic Accuracy	n/a	n/a	n/a
20	Scalability in Connected Devices	n/a	n/a	n/a
21	Task Completion Accuracy	n/a	n/a	n/a
22	User Satisfaction with Automation Systems	n/a	n/a	n/a
	KPIs relat	ted to smart building	services	
23	Total Operational Cost per m ² per Year	n/a	n/a	n/a
24	Annual CO2 Emissions	JSI	PETROL	yearly
25	Annual Primary Energy Use per m ²	JSI	PETROL	yearly
26	Annual Electricity Use per m ²	JSI	PETROL	yearly
27	Peak Electricity Demand per m ²	n/a	n/a	n/a

28	Annual Heating Demand per m ²	n/a	n/a	n/a
29	Peak Heating Demand per m ²	n/a	n/a	n/a
30	Annual Cooling Demand per m ²	n/a	n/a	n/a
31	Peak Cooling Demand per m ²	n/a	n/a	n/a
32	Yearly Thermal Discomfort	n/a	n/a	n/a
33	Indoor Air Quality (CO ₂	n/a	n/a	n/a
	Concentration) (excl. Greek pilot)			
	KPIS RELAT	TED TO SMART GRID	SERVICES	·
34	Delivered flexibility	JSI	PETROL	per event, daily
35	Flexibility factor	JSI	PETROL	daily
36	Flexibility index	JSI	PETROL	daily
37	Shifted flexible load	JSI	PETROL	per event, daily
38	Self consumption rate	JSI	PETROL	daily
39	Supply cover factor	JSI	PETROL	daily
40	Grid delivered factor	JSI	PETROL	daily
41	Additional energy consumed	JSI	PETROL	per event, daily
42	Peak delivered	JSI	PETROL	daily
43	Peak exported	JSI	PETROL	daily
44	Energy cost reduction due to flexibility delivery	JSI	PETROL	per event, daily
45	Peak demand factor	JSI	PETROL	per event, daily

ANNEX 6 USE CASE TEMPLATE

Description of the Use Case

Use case Identification				
ID	Title	Domain		
	Provide a clear and concise title for the use case that summarizes the main focus or objective.	Identify the primary domain or sector the use case falls under (e.g., Energy Efficiency, DER).		

Version Management				
Version No	Date	Name of authors	Changes	

Scope and Objectives of Use Case		
Scope of the use case	Describe the overall scope, including the boundaries, the main activities involved, and the key aspects the use case will address.	
Objectives of the use case	List the specific goals the use case aims to achieve. These should be clear, measurable, and directly related to the scope of the use case.	
Limitations & Assumptions	Identify any constraints, assumptions, or conditions that may impact the use case. (e.g regulatory, political)	

Narrative of Use Case		
Short Description	Provide a brief explanation of the use case. The purpose is to create a concise text that summarizes the UC. (no more than 10 lines)	
Complete Description	Offer a detailed description, including technical aspects, methodology, and any relevant background information. This section should give a comprehensive overview of how the use case will be implemented. The description should include motives and intents from a variety of actors. The text should include a step-by-step explanation of the service from start to finish. The story should include details such as when, why, with what expectation, and under what conditions.	

Classification Information

Pilot Involved	Identify the primary organization or partner leading the use case		
Relation to Other Use Cases	Provide if this UC is related to other UC		
Related Innovative SEEDS solutions	List the specific SEEDS innovations and solutions that are relevant to the use case. Describe how they will be utilized or integrated.		
Assets of the UC	Provide a list of assets which are needed specifically for this use case. (e.g HP, VRV, Chiller)		

Diagrams of the UC

Sequence diagram of the use case

Technical Details of the UC

Specify the actors which are involved in the use case. They can include <u>roles, people, systems,</u> <u>devices</u>, etc. (Actor Type: Can be a Role (a DSO, a Balance Responsible Party, an Aggregator...), a Person (a Distribution Management System Operator), a System (a Weather Forecast System, a Demand Response Management System, a Building Management System...), a Device (a charging spot), or an Application.)

A short description of the actors along with any further information should be included.

Actors							
Actor Name Actor Type		Actor Description	Further information specific to this Use Case				

Step-by-step analysis of use case

Overview of scenarios

In the next table, provide scenarios associated with the use cases described above.

- No.: The scenarios are sequentially numbered.
- Scenario Name and description: Describes the scenario and is used as identifier.
- **Primary Actor**: Describes which actor(s) trigger(s) this scenario.
- **Triggering Event**: Describes which event(s) trigger(s) this scenario.
- **Pre-Condition:** Describes which condition(s) should have been met before this scenario happens.
- **Post-Condition**: Describes which condition(s) should prevail after this scenario happens. The post conditions may also define "success" or "failure" conditions for each use case.

Scenario Conditions								
Νο	Scenario title	Scenario description	Primary actor	Triggering event	Pre-condition	Post- Condition		
e.g S01	e.g Registration and Prequalification	DSO sends the prosumer an offer to use their PV inverter to control the voltage in the network	DSO, RP	DSO wants to use PV inverters installed at the prosumers site to do voltage control	The secondary substation to which prosumers are connected has been modernized to the level of a Flexstation	PV inverter connected with FS		

Steps per scenario

Scenario Name:	Registration and Prequalification								
Step No.	Event	Name of Process/ Activity	Description of Process/ Activity	Service	Information Producer (Actor)	Information Receiver (Actor)	Informatio n exchanged (IDs)	Requirements, R-ID	
e.g 1.1		e.g Offer of cooperatio n	DSO sends offers to prosumers to use a PV inverter to control the voltage in the grid	send	DSO	RP	Name of informatio n e.g Info1		

https://project-seeds.eu/

project-seeds

@EU_SEEDS