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Abstract
This paper presents a method for changing the energy use of

consumers participating in Demand Response (DR) programs,

focusing on peak balancing to improve grid stability. Multiple ob-

jectives including costs and risks are considered, and a weighted

sum is used to transform them into a single objective. This re-

sults in an optimization problem that can be optimally solved.

To calculate the costs, the load consumption baseline needs to

be established. Since this is challenging and can be exploited,

we conduct initial experiments to test whether our method to

adjust the baseline can be easily manipulated. We explore an

original scenario and three of its variants to examine the effects

of various parameters on the optimization outcome. Our results

indicate that 1) an excessive emphasis on risk results in no energy

change, 2) enforcing a net zero energy change minimizes energy

use while still securing the rebate, and 3) without an adjustment

period, the consumer is less inclined to increase the load just be-

fore the demand period. In future work, we will reformulate some

objectives to avoid exploitation and better reflect the real-world

needs of DR.
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1 Introduction
Peaks in energy demand can strain the electrical grid, leading to

inefficiencies and potential failures. A widely used strategy for

balancing these peaks is Demand Response (DR), in which the

Distribution System Operator (DSO) forecasts future peaks and

requests from consumers to adjust their energy use to reduce

them. In the peak time rebate DR program [2], consumers receive

a rebate if they reduce their load in the demand period. On the

other hand, if they commit to respond to the demand, but fail to

do so, they can be penalized. It is therefore of utmost importance

to accurately assess whether and how much a consumer reduced

their load to meet the demand.

The load reduction of a consumer is computed as the differ-

ence between its baseline (the amount of energy the customer

would have consumed without a demand request) and its actual

use [2]. The importance of establishing a baseline and the various

ways of calculating it are presented in [5]. Common methods

for calculating baselines include simple historical data averages,

exponential moving averages and short-term load forecasting
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techniques. However, baselines can be exploited, e.g., when con-

sumers artificially increase consumption before an event to inflate

their baseline and maximize the awarded rebate.

Through the SEEDS project
1
, we are developing a method-

ology for providing energy flexibility services to prosumers –

participants in energy markets capable of both producing and

consuming energy – in order to enhance grid stability. Machine

learning is used to predict the baseline energy usage of prosumers

and their flexibility, while mixed-integer linear programming

(MILP) is used to optimize the operation of prosumers within

their flexibility. Our approach will be tested in the Slovenian pilot,

in collaboration with Petrol d.d. and Elektro Celje d.d.

Our work integrates prosumer flexibility into DR optimization,

focusing on minimizing costs and risks while limiting energy

fluctuations. While the goal is to eventually use this approach on

real-world data from the pilot, this paper reports on some initial

experiments verifying whether the current problem formulation

results in solutions with desired properties. In particular, we wish

to test if our adjusted consumer baseline approach can be easily

exploited.

Research on prosumer flexibility, optimization techniques,

and demand response optimization includes a wide range of

approaches [8]. In [3], Balázs et al. quantify residential prosumer

flexibility using engineering models and real-world data. Their

work provides valuable insight into prosumer behavior and en-

ergy management. Capone et al. [4] optimize district energy

systems by balancing costs and carbon emissions with genetic al-

gorithms and linear programming, showing significant emission

reductions at a modest cost increase. Magalhães and Antunes [7]

compare thermal load models in demand response strategies

using MILP, finding that discrete control formulations improve

computational efficiency. Thus, our methodology is in line with

related work while the actual optimization problem (its vari-

ables, objectives and constraints) differs from existing ones as it

is adapted to our specific use case.

This paper is further organized as follows. In Section 2, we

provide a brief overview of the optimization problem, followed

by its detailed definition in terms of its variables, constraints and

objectives. The optimization approach is explained in Section 3,

where we discuss the scalarization technique used to transform

our multi-objective problem into a single-objective MILP form

and the method used to solve it. The experiments and their results

are given in Section 4. Finally, conclusions and further work ideas

are described in Section 5.

2 Optimization Problem
The problem formulation in this work assumes a peak time rebate

DR program in which the DSO and the consumer have a contract

stipulating the following conditions: 1) the consumer can chose

whether to respond to a demand request, 2) if the consumer

1
https://project-seeds.eu/
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participates in DR, it receives a rebate proportional to the reduced

load, 3) if the consumer participates in DR but does not reduce the

load by at least 75 % of the required amount, it is penalized, 4) the

load reduction is estimated using an adjusted consumer baseline,

which takes into account the forecast consumer energy usage as

well as its actual consumption before the demand period.

The optimization task is to set the energy consumption of

all loads of a consumer participating in DR taking into account

their flexibility so that consumer costs, risks and energy fluctua-

tions are minimized. This ensures efficient grid operation while

maintaining economic feasibility for the consumer.

To formally define our optimization problem, we first intro-

duce its variables, followed by the constraints and the objective

functions we aim to optimize. Finally, we provide an overview

of the weighted sum approach, which serves as the scalarization

technique to transform all objective values into a single one.

2.1 Variables
A solution is specified by the energy amounts 𝐸𝑐,𝑖 ∈ R for each

consumer load 𝑐 ∈ C and time interval 𝑖 ∈ {1, . . . , 𝑛}. They
correspond to the change of consumption from the forecast one.

These are the only variables of this optimization problem.

From these energy amounts and the forecast timetable of en-

ergy usage, the resulting energy consumption 𝐸𝑖 in time interval

𝑖 ∈ {1, . . . , 𝑛} is computed as

𝐸𝑖 = 𝐸F𝑖 +
∑︁
𝑐∈C

𝐸𝑐,𝑖 .

2.2 Constraints
The energy amounts of a solution need to adhere to two kinds of

constraints. The first type are the interval energy constraints:

𝐸min

𝑐,𝑖 ≤ 𝐸𝑐,𝑖 ≤ 𝐸max

𝑐,𝑖 ,

for each consumer load 𝑐 ∈ C and time interval 𝑖 ∈ {1, . . . , 𝑛}.
The second are the total energy constraints:

𝐸
𝑇,min

𝑐 ≤
𝑛∑︁
𝑖=1

𝐸𝑐,𝑖 ≤ 𝐸
𝑇,max

𝑐 ,

for each consumer load 𝑐 ∈ C.

2.3 Objective Functions
The three objectives to be minimized in this scenario are the

costs, risks and energy fluctuations.

The first optimization objective 𝑓1 consists of all costs associ-

ated with the solution and equals

𝑓1 = 𝑓 E − 𝑓 R + 𝑓 P,

where 𝑓 E represents the energy costs, 𝑓 R is the rebate for the

recognized load reduction and 𝑓 P is the penalty that is charged

in case the recognized load reduction does not meet the require-

ments.

The energy costs 𝑓 E equal the sum of energy costs over all

time intervals 𝑖 ∈ {1, . . . , 𝑛},

𝑓 E =

𝑛∑︁
𝑖=1

𝑝𝑖 𝐸𝑖 ,

where 𝑝𝑖 is the interval energy price.

The solution gains a rebate it the load is reduced in the demand

period {𝑡S, . . . , 𝑡E}. Note that the recognized load reduction 𝐸R𝑡 ,

𝑡 ∈ {𝑡S, . . . , 𝑡E}, is computed from the adjusted timetable energy

𝐸A𝑡 instead of the forecast one 𝐸F𝑡 , where the adjustment is deter-

mined by the energy amounts in the adjustment period – the 𝑛A

intervals before the start of the demand period 𝑡S. More formally,

the adjusted timetable is computed as

𝐸A𝑡 =


𝐸F𝑡 −

1

𝑛A

𝑡S−1∑︁
𝑗=𝑡S−𝑛A

(
𝐸F𝑗 − 𝐸 𝑗

)
, if 𝑛A > 0;

𝐸F𝑡 , otherwise

for all intervals 𝑡 ∈ {𝑡S, . . . , 𝑡E} in the demand period. Then,

the recognized load reduction 𝐸R𝑡 at demand time interval 𝑡 ∈
{𝑡S, . . . , 𝑡E} is determined as

𝐸R𝑡 = 𝐸𝑡 − 𝐸A𝑡 ,

while the total recognized load reduction 𝐸R is computed as

𝐸R =

𝑡E∑︁
𝑡=𝑡S

𝐸R𝑡 .

A rebate is awarded if 𝐸R is negative (the consumption has

been reduced). If the total recognized load reduction exceeds the

total demanded energy reduction 𝐸T, the rebate is capped, i.e.,

𝑓 R =

{
𝑝B min

(��𝐸R�� , ��𝐸T��) , if 𝐸R < 0

0, otherwise

.

Finally, a penalty is added to the total costs if the demand

has not been met, that is, the ratio between the recognized and

demanded energy reduction, 𝐸D, in any of the demand time

intervals 𝑡 ∈ {𝑡S, . . . , 𝑡E} is lower than 75 %,

𝑓 P =

𝑝
P |𝐸T |, if

𝐸R𝑡

𝐸D
< 75 % for one or more 𝑡 ∈ {𝑡S, . . . , 𝑡E}

0, otherwise

.

The second optimization objective 𝑓2 represents risks. In order

to penalize any changes to the timetable when the risks are high,

the objective function is defined as

𝑓2 =

𝑛∑︁
𝑖=1

𝑟𝑖

∑︁
𝑐∈C

��𝐸𝑐,𝑖 �� ,
where 𝑟𝑖 represents the risk at time interval 𝑖 .

To penalize unnecessary energy fluctuations, the third objec-

tive 𝑓3 averages the consecutive changes in energy amounts for

all consumer loads, i.e.,

𝑓3 =
1

(𝑛 − 1) |C|

𝑛∑︁
𝑖=2

∑︁
𝑐∈C

��𝐸𝑐,𝑖 − 𝐸𝑐,𝑖−1
�� .

2.4 Weighted Sum Approach
Since the optimal solutions to this problem appear to reside in

the convex region of the objective space, we use a weighted sum

approach to transform all objective values into a single one. The

single objective function to be minimized thus equals

𝑓 = 𝑤1 𝑓1 +𝑤2 𝑓2 +𝑤3 𝑓3

under the condition 𝑤1 + 𝑤2 = 1. The weight 𝑤3 can be set

independently of𝑤1 and𝑤2 and serves as a measure of limiting

the energy fluctuations.
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3 Optimization Approach
3.1 Setting Weights in the Weighted Sum
To obtain diverse solutions with the weighted sum approach, a

good strategy for setting the weights is needed. While we plan to

use amore sophisticated approach for this purpose in future work,

these initial experiments were made by choosing equidistant

values of 𝑤1 from the interval [0, 1] and defining 𝑤2 as 1 −𝑤1.

In order to limit energy fluctuations, we set𝑤3 to 10
−3
. Smaller

weights proved insufficient in limiting the fluctuations while

larger weights interfered with the first two objectives, which are

more important than the third.

3.2 Linearization
Since all of the objective functions specified in Section 2.3 are

either non-linear or contain non-linear parts, specific techniques

are required to linearize these objectives and ensure the problem

fits the MILP form. In particular, it is necessary to linearize the ab-

solute value of a real variable, the product of a binary variable and

a real variable, the minimum of two variables, along with other

non-linear function conditions. We use standard approaches to

achieve linearization for all these cases [9].

3.3 Tool and Solver
We use the OR-Tools Python library

2
to implement and solve

the single-objective MILP problem. The library is a comprehen-

sive tool for solving optimization problems, including linear pro-

gramming, integer programming, and combinatorial optimiza-

tion. Specifically, we use the SCIP (Solving Constraint Integer

Programs) solver [1] integrated within OR-Tools
3
for solving

MILP problem instances.

To solve a MILP problem using OR-Tools and the integrated

SCIP solver, the following steps are performed: import the linear

solver wrapper, declare the SCIP solver, define the variables with

their respective bounds, set the constraints and the objective

function and lastly, analyze and display the solution.

4 Experiments
We first conduct experiments using a basic scenario with a single

consumer load. Then, we variate some parameters of this scenario

to see how they affect the resulting solutions.

4.1 Experimental Setup
The basic scenario has the following parameters:

• Time is represented as 28 15-minute intervals.

• The demand period starts at 𝑖 = 13 and ends at 𝑖 = 16.

• The total required reduction 𝐸T equals −8 kWh and the

required reduction 𝐸D at each interval equals −2 kWh.

• The adjustment period has a duration of four intervals.

• The load change needs to be within [−3 kWh, 3 kWh] for

each interval 𝑖 = 5, 6, . . . , 24 and is fixed to 0 kWh for the

remaining intervals.

• The forecast timetable energy 𝐸F
𝑖
is constant and equals

12 kWh for all time intervals.

• The total energy constraint is unbounded.

• The risk equals 0.50 for all time intervals.

• All prices are constant: 𝑝𝑖 = 0.25 EUR, 𝑝R = 0.50 EUR and

𝑝P = 1.00 EUR.

2
https://developers.google.com/optimization

3
https://github.com/google/or-tools/blob/stable/ortools/linear_solver/samples/mi

p_var_array.py

The three scenario variants differ from the basic as follows.

The first scenario variant has no demand. In the second and

third scenario variant, the total energy change is set to 0 kWh

ensuring the reduction in energy consumption in some intervals

is matched with its increase in others. Additionally, the third

scenario variant has no adjustment period, i.e, 𝑛A = 0.

4.2 Results and Discussion
We discuss here the results of our original scenario and its three

variants. They are depicted also in plots in Figures 1 to 4, which

show with a black line how the consumer load changes from its

planned timetable. Consumer load flexibility at each time interval

is shown in gray (there is no flexibility in the first four and last

four intervals). The demand period is denoted in red and the

adjustment period in blue. In most cases (unless the risk has

a large weight), the consumer reduces the load in the demand

period enough to meet the required demand and earn the entire

available rebate while not incurring any penalty. The amount of

this reduction and the energy change outside of this period differ

for the various scenario variants.

4.2.1 Original Scenario. When the risk has a large weight, the

load does not change outside of the demand period (see the top

plot in Figure 1). However, when the impact of risk is minimal

(bottom plot in Figure 1), the load is reduced everywhere except

during the adjustment period. This strategy artificially increases

the perceived load reduction to maximize the rebate, as dictated

by the rebate calculation formula.

4.2.2 Scenario Variant #1: No Demand. If the optimization is

called without a demand, the result depends on the weighting of

the first two objectives. As long as the impact of risk is significant

(top plot in Figure 2), the load does not change. Otherwise, the

load is reduced to the maximum extent in each interval (bottom

plot in Figure 2). This approach minimizes the function 𝑓𝐸 , there-

fore reducing costs. This means that the consumer behavior can

change when optimized even if no demand is present.

4.2.3 Scenario Variant #2: Zero Total Energy Change. Due to the

zero energy constraint, the consumer makes adjustments solely

within the demand and adjustment periods (see Figure 3). During

the adjustment period, the user offsets the consumption from the

demand period, thereby achieving a maximal rebate. To adhere

to the requirement of minimizing risks and fluctuations in other

intervals, no additional changes are made, as such actions would

increase the objective value.

4.2.4 Scenario Variant #3: Zero Total Energy Change and No Ad-
justment Period. When the baseline is not adjusted, the load is

increased in intervals outside of the demand period, regardless

whether they occur before or after it. The specific intervals when

this happens depend on the solver and are random as they lead

to the same objective function value. An example of such a case

in depicted in Figure 4.

The last two variants additionally confirm that the usage of

the adjustment period enables exploitation – the entire rebate

can be gained with a smaller load reduction in the demand period

if the load is increased in the adjustment period.

5 Conclusions
This paper focuses on demand response optimization and the

growing role of prosumers in energy systems. A standard MILP

framework is used to set the consumer load energies within
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Figure 1: Results for the original scenario with 𝑤1 = 0.6

and𝑤2 = 0.4 (top) and𝑤1 = 0.8 and𝑤2 = 0.2 (bottom).
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Figure 2: Results for the variant without demand with𝑤1 =

0.5 and𝑤2 = 0.5 (top) and𝑤1 = 0.7 and𝑤2 = 0.3 (bottom).
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Figure 3: Results for the variant with zero total energy
change with𝑤1 = 0.6 and𝑤2 = 0.4.
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Figure 4: Results for the variant with zero total energy
change and no adjustment period with 𝑤1 = 0.6 and 𝑤2 =

0.4.

their flexibility so that the costs, risks and energy fluctuations

are all minimized. Since the objectives are scalarized with the

weighted sum approach, correctly setting their weights is crucial

for generating a set of diverse solutions representing various

trade-offs between costs and risks.

By creating three scenario variants, we were able to explore

the effect of some parameters on the optimization outcome. We

observe that:

• Regardless of the variant, the optimal load schedule does

not deviate from the forecast one if the importance of risk

is too high, i.e., if the weight𝑤2 is too large. This critical

value of𝑤2 depends on the scenario variant.

• If the consumer is obliged to a zero sum in load increase

and reduction, the optimal solution uses the minimal nec-

essary resources to earn a rebate while avoiding excessive

energy changes.

• When the adjustment period is unspecified, the prosumer

is less likely to increase the load just before the demand

period.

Moving forward, we need to refine the objectives. The cur-

rent method to assess the baseline consumption is susceptible

to exploitation and should be amended. We could calculate the

consumer baseline from similar consumers that do not partici-

pate in DR as suggested in [6]. We will also need to revise the

penalty calculation to account for the imminent change of tariffs

in the Slovenian energy market. We additionally plan to improve

the calculation of risks to ensure more robust optimization and

real-world applicability. Finally, we intend to develop a better

strategy for setting the weights, targeting values with the most

significant impact rather than evenly distributing them.

Acknowledgements
The SEEDS project is co-funded by the European Union’s Horizon

Europe innovation actions programme under the Grant Agree-

ment n°101138211. The authors acknowledge the financial sup-

port from the Slovenian Research and Innovation Agency (re-

search core funding No. P2-0209). The authors wish to thank

Bernard Ženko, Martin Žnidaršič and Aljaž Osojnik for helpful

discussions when shaping this work.

References
[1] Tobias Achterberg. 2009. SCIP: Solving constraint integer programs. Mathe-

matical Programming Computation, 1, 1–41. doi: 10.1007/s12532-008-0001-1.
[2] AEIC Load Research Committee. 2009. Demand response measurement &

verification: Applications for load research. Tech. rep. AEIC Load Research

Committee.

[3] István Balázs, Attila Fodor, and Attila Magyar. 2021. Quantification of the

flexibility of residential prosumers. Energies, 14, 4860. doi: 10.3390/en141648
60.

[4] Martina Capone, Elisa Guelpa, and Verda Vittorio. 2021. Multi-objective

optimization of district energy systems with demand response. Energy, 227,
120472. doi: 10.1016/j.energy.2021.120472.

[5] Antonio Gabaldón, Ana García-Garre, María Carmen Ruiz-Abellón, Antonio

Guillamón, Carlos Álvarez-Bel, and Luis Alfredo Fernandez-Jimenez. 2021.

Improvement of customer baselines for the evaluation of demand response

through the use of physically-based load models. Utilities Policy, 70, 101213.
doi: 10.1016/j.jup.2021.101213.

[6] Joe Glass, Stephen Suffian, Adam Scheer, and Carmen Best. 2022. Demand

response advanced measurement methodology: Analysis of open-source

baseline and comparison group methods to enable CAISO demand response

resource performance evaluation. Tech. rep. California Independent System

Operator (CAISO).

[7] Pedro L. Magalhães and Carlos Henggeler Antunes. 2020. Comparison of ther-

mal load models for MILP-based demand response planning. In Sustainable
Energy for Smart Cities. Springer International Publishing, Cham, 110–124.

[8] Javier Parra-Domínguez, Esteban Sánchez, and Ángel Ordóñez. 2023. The

prosumer: A systematic review of the new paradigm in energy and sustainable

development. Sustainability, 15, 13. doi: 10.3390/su151310552.
[9] Nace Sever. 2022. Časovno razporejanje terenskih nalog z mešanim celoštevil-

skim linearnim programiranjem. Bachelor’s Thesis. University of Ljubljana,

Faculty of Mathematics and Physics. https://repozitorij.uni-lj.si/IzpisGradiva

.php?lang=slv&id=140427.

66

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.3390/en14164860
https://doi.org/10.3390/en14164860
https://doi.org/10.1016/j.energy.2021.120472
https://doi.org/10.1016/j.jup.2021.101213
https://doi.org/10.3390/su151310552
https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=140427
https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=140427



